
C, .fl\/ -)1

w i l I II 1 I i

M- ASIA I(",, I IS 7

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRI.BUTION IAVAILABILITY OF REPORT

Approved for public release; distribution

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-415 N00014-83- -0125

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy

Science I
6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

PHYSICS AND COMPUTATION

12. PERSONAL AUTHOR(S)
Margolus, Norman H.

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Technical FROM TO 1987, June 188,

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP ,?physics; computation, information, modeling,'
cellular automata,' reversibility,' quantum mechanics: time,.

19 ABSTRACT (Continue on reverse if necessary a identify by block number)

Physics imposes fundamental constraints on the ultimate potentialities of computing mechanisms.
The most prominent fundamental constraint coming from physics that is felt today is the

finiteness of the speed of light. Thiconstraint implies that communication paths inside of a

computer should be as short as possible. For maximum speed, we would also like to have massive
parallelism. This motivates us to consider the compu-tationalcapabilites of cellular automata.

uniform arrays of identical processors, each communicating only wih neary neighboring
processors. It4. - Cot..I)i.. , 4, , "e

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

ED UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Judy Little. Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

Unj laosevfft hibflr Office: 0116-1507-47
I.. Unclassified

19 (cont.)

Another constraint concerns heat dissipation, which limits the maximum size and density of
computers. Just as reversible engines are ideally the most energy efficient engines, logically
reversible computations (which can be implemented in terms of thermodynamically reversible
mechanisms) are ideally the most energy efficient. This motivates us to consider the computational.
capabilities of reversible logic.

Before one can contemplate actually building computers based on reversible logic and cellular
automata, it is necessary to demonstrate that computation is possible in such systems. The
compatibility of computation with cellular automata was first demonstrated by von Neumann;
theoretical objections concerning the compatibility of computation with reversibility were first
answered by Bennett. Toffoli dealt with the combination of reversibility and cellular automata, but
not in a way that could make use of Bennett's technique for making reversible computations
practicable. The first cellular automata models which incorporate reversibility in a way which
makes computation practicable are given here.

Constraints arising from quantum mechanics will presumably be felt as computer elements
continue to get smaller. Benioff was the first to address the question of whether or not a
microscopic quantum Hamiltonian system can perform exact deterministic computation. He pointed
out that any computer for which the time development is generated by the Schrodinger equation
must be a reversible computer. Feynman presented the first convincing time-independent quantum
Hamiltonian model of computation. Here I use one of my reversible cellular automata models of
computation as the basis of explicit quantum Hamiltonian models, and address for the first time the
problem of constructing quantum models of parallel computation. I introduce a simple scheme for
producing models which simulate a synchronous evolution without any global synchronization, and
use this as the basis of a partially successful parallel model, which points up certain difficulties.

Another major facet of the research presented here deals with computers optimized for the

simulation of cellular automata. The reversibility and quantum mechanical issues are rather far
from limiting current computers, but even in the context of current technology there are enormous
advantages in terms of speed, simulation size, and cost that are available to machines tailored
specifically for cellular automata. Toffoli and I designed the first general purpose cellular automata

machine for use in investigating some of the theoretical models we had constructed. This machine
has had a significant impact on the advent of new physical models based on cellular automata (such

as the recent lattice gas models of fluid dynamics), and we have arranged for a commercial version

to be made available to investigators. I discuss here the architecture and use of the latest version,

as well as give a design for the first cellular automata machine that will be able to perform massive

3-dimensional simulations (it will have billions of computational degrees of freedom, each of which

will be updated 100 times per second).
Finally, a large number of original results are presented here concerning reversible logic,

reversible computation, the construction of reversible cellular automata, invariants in reversible

cellular automata, and the applicability of various ideas from physics to the analysis (and
synLI IsIo) ofJ reveriuleimodeuls rn~a all mutainu r

Physics and Computation

by Norman H. Margolus

Submitted to the Department of Physics in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

Massachusetts Institute of Technology
June, 1987

Keywords: physics, computation, information, modeling,
cellular automata, reversibility, quantum mechanics, time.

Accesion For

NTIS CRA&I
OTIC TAB
Unannounced 0
Justificdtion

By
Disti ibution I

Availability Codes

I Avail andlor

Dist Special

A-I ___

2

@ Norman H. Margolus, 1987.

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

3

Physics and Computation

by
Norman H. Margolus

Submitted to the Department of Physics on May 15, 1987 in
partial fulfillment of the requirements for the Degree of Doctor
of Philosophy in Physics.

Abstract

Physics imposes fundamental constraints on the ultimate potentialities
of computing mechanisms.

The most prominent fundamental constraint coming from physics that is
felt today is the finiteness of the speed of light. This constraint implies that
communication paths inside of a computer should be as short as possible.
For maximum speed, we would also like to have massive parallelism. This
motivates us to consider the computational capabilities of cellular automata:
uniform arrays of identical processors, each communicating only with nearby
neighboring processors.

Another constraint concerns heat dissipation, which limits the maximum
size and density of computers. Just as reversible engines are ideally the most
energy efficient engines, logically reversible computations (which can be im-
plemented in terms of therin~tlynamica~ly reversible mechanisms) are ideally
the most energy efficient. This motivates us to consider the computational
capabilities of reversible logic.

Before one can contemplate actually building computers based on re-
versible logic and cellular automata, it is necessary to demonstrate that
computation is possible in sucl: systems. The compatibility of computation
with cellular automata was first demonstrated by von Neumann; theoretical
objections concerning the compatibility of computation with reversibility
were first answered by Bennett. Toffoli dealt with the combination of re-
versibility and cellular automata, but not in a way that could make use
of Bennett's technique for making reversible computations practicable. The
first cellular automata models which incorporate reversibility in a way which
makes computation practicable are given here,

Constraints arising from quantum mechanics will presumably be felt as
computer elements continue to get smaller. Benioff was the first to address
the question of whether or not a microscopic quantum Hamiltonian system

4

can perform exact deterministic computation. He pointed out that any com-
puter for which the time development is generated by the Schr~dinger equa-
tion must be a reversible computer. Feynman presented the first convincing
time-independent quantum Hamiltonian model of computation. Here I use
one of my reversible cellular automata models of computation as the-basis
of explicit quantum Hamiltonian models, and address for the first time the
problem of constructing quantum models of parallel computation. I intro-
duce 2, simple scheme for producing models which simulate a synchronous
evolution without any global synchronization, and use this as the basis of a
partia13 successful parallel model, which points up certain difficulties.

Another major facet of the research presented here deals with comput-
ers optimized for the simulation of cellular automata. The reversibility and
quantum mechanical issues are rather far from limiting current computers,
but even in the context of current technology there are enormous advantages
in terms of speed, simulation size, and cost that are available to machines
tailored specifically for cellular automata. Toffoli and I designed the first
general purpose cellular automata machine for use in investigating some of
the theoretical models we had constructed. This machine has had a signifi-
cant impact on the advent of new physical models-based on cellular automata
(such as the recent lattice gas models of fluid dynamics), and we -have ar-
ranged for a commercial version to be made available to investigators. I
discuss here the architecture and use of this latest version, as well as give a
design for the first cellular automata machine -that will be able to perform
massive 3-dimensional simulations (it will have billions of computational-de-
grees of freedom, each of which will be updated 100 times per second).

Finally, a large number of original results are presented here concern-
ing reversible logic, reversible computation, the construction of reversible
cellular automata, invariants in reversible cellular automata, and the ap-
plicability of various ideas from physics to the analysis (and synthesis) of
reversible models of computation.

Thesis Supervisor: Edward Fredkin

Contents

Acknowledgements 9

Introduction 13
0.1 What is a computation? 13
0.2 Compatibility with nature 14

1 Reversible logic 17
1.1 Irreversibility and heat generation 17
1.2 Reversible computation 18

1.2.1 Universal sets of logic gates 21
1.2.2 Universal sets of reversible gates 23
1.2.3 The Toffoli gate 24
1.2.4 Conservative logic 25
1.2.5 Other conservative logic gates 30

1.3 The Billiard Ball Model 31
1.4 Bit-conserving functions 36

1.4.1 Outline of the Proof 37
1.4.2 A generalization of the interaction gate37
1.4.3 Building interaction gates out of Fredkin gates . . 40
1.4.4 Corollary 43
1.4.5 Discussion 44

1.5 Logical heat 44
1.5.1 The Impossible Box 45
1.5.2 Temperature 47
1.5.3 Reclaiming Balls 48
1,5,4 Generalization 50

1.5.5 Discussion 51

6 Contents

2 Reversible cellular automata 53
2.1 Cellular Automata 54
2.2 Approaches to reversibility 55
2.3 Partitioning cellular automata 57
2.4 The BBM cellular automaton 59
2.5 Running backwards 66
2.6 Relationship of BBMCA to Conservative Logic68
2.7 Second-order cellular automata 69

2.7.1 Second-order, reversible, universal automata . . . 71
2.8 Consequences of reversibility 79

2.8.1 Entropy in RCA 79
2.8.2 The charming circle 82

3 Conservation Laws in RCA 85
3.1 Invariants in Partitioning RCA 85

3.1.1 Energy in the BBMCA 89
3.2 Invariants in 2nd-order RCA 90

3.2.1 Localized invariants 90
3.2.2 Energy-like invariants 91

3.3 Hamiltonian dynamics 95

4 CA models of physics 99
4.1 Constructing CA models 99
4.2 Models based on lattice gases 101

4.2.1 A vas with a finite impact parameter 103
4.2.2 Reflection and refraction 104

4.3 Matched pairs 105
4.3.1 Dynamical spin models 08
4.3.2 Elastic strings 110

4.4 Logic 115

5 Time and Spacetime 119
5.1 The arrow of time 119

5.1.1 Coming full circle 120
5.1.2 The order of events 121

5.2 Synchronous causality 9...................122

5.2.1 CA which are effectively synchronous122

Contents 7

5.2.2 Local synchronization 123
5.2.3 Sychronization semaphores 124
5.2.4 Asynchronous cellular automata 125

5.3 Relativity 127
5.3.1 Simultaneity 127
5.3.2 A Lorentz boost 129
5.3.3 Lorentz invariance 133

6 Quantum Computation 135
6.1 Approaches to Quantum Computation 136

6.1.1 Time-evolution operator approach137
6.1.2 Hamiltonian operator approach 138

6.2 A reversible model of computation 139
6.3 Time-evolution operator approach 139
6.4 Hamiltonian operator approach 141

6.4.1 Serial computer 141
6.4.2 Parallel computer 143

6.5 Discussion 145

7 Cellular Automata Machines 147
7.1 Truly massive computation 148
7.2 A processor in every cell? 149
7.3 An existing CAM 150
7.4 Physical modeling with CAM-6 153
7.5 CAM-7 161
7.6 CAM-7 Architecture 163

7.6.1 Basic structural elements 163
7.6.2 Neighborhoods 164
7.6.3 Input and output 167
7.6.4 Data analysis 170
7.6.5 Error handling 171
7.6.6 Three-dimensional operation 172
7.6.7 Display 175
7.6.8 A true three-dimensional display 176

7.7 Applications 177

Bibliography 179

8 Contents

Acknowledgements

I would first of all like to thank Edward Fredkin, my thesis advisor,
without whose support and encouragement I would have found it very
difficult to write a thesis on the present topic. His ideas on using
the.oretical physics as a source of new computational principles and
constraints, and his invention of reversible models of computation form
the theoretical and motivational bases of this work.

I would next like to thank Tommaso Toffoli, who has been a fello"
swimmer in these unconventional waters, and a collaborator on many
projects. Together we developed the CAM machines-windows onto
cellular automata worlds. Numerous discussions and arguments with
him have contributed greatly to my understanding of the-field of Infor-
mation Mechanics. I thank him also for his encouragement in finally
escaping from other projects and getting this thesis completed.

Next, Charles Bennett, one of the co-discoverers of reversible com-
putation (along with Fredkin and Toffoli). He has been one of the
principal users of our Cellular Automata Machines, and has shared his
deep understanding of issues relating to thermodynamics and statistical
mechanics.

In addition to these good friends, I would like to thank my family
for tneir understanding and support in my rather extended course of
research; the families of my co-workers who have taken me into their
homes as one of them; and all of my other friends who have helped keep
me sane.

Finally, I would also like to thank co-workers in the field who have
helped me in my research-particularly Richard Feynman whom I enor-
mously enjoyed visiting for several months at Cal Tech, as well as P. A.
Benioff, U. Frisch, Y. Pomeau, G. Y. Vichniac (who was until recently

9

10 Acknowledgements

part of our research group), and S. Wolfram-as well as acknowledge
practical support and encouragement from my friends and co-workers
at the MIT Laboratory for Computer Science, and from my thesis com-
mittee (Professors John Joannopoulos and Felix Villars).

This research was supported in part by the following government
agencies: Defense Advanced Research Projects Agency (Grant No.
N00014-83-10-0125), National Science Foundation (Grant No. 8214312-
IST), U.S. Department of Energy (Grant No. DE-AC02-83-ER13082);
and by a grant from International Business Machines (Grant No. 3260).

Norman Margolus

May 15, 1987

11

Physics and Computation

12 Acknowledgements

Introduction

The ultimate potentialities and limitations of computing mechanisms
depend upon the efficiency with which physical-interactions can be used
to perform computations. This in turn depends upon what we call a
computation, and to what extent our conceptual models of computation
can be restructured to make them more compatible with the resources
offered by nature.

0.1 What is a computation?

All of the conceptual models of computation that we will deal with will
be based on the idea of digital computation-computation performed
in terms of state variables that have a discrete and finite spectrum of
possible values. While it is true that the dynamical evolution of a non-
digital system such as a wind tunnel can perform a kind of computation
for us, digital computation has properties which make it so attractive
that it has become virtually synonymous with the word 'computation.'

First of all, digital computation is an abstraction of the way that we
use a finite set of discrete symbols to deal with arbitrary information.
All possible mechanical manipulations of such symbolic data can be
performed by a digital computer.

Secondly, digital computation is exact. We can build computers
that have an arbitrarily small chance of having made an error in the
course of billions of billions of operations. This leads to what is perhaps
the paradox of computation: our ability to predict the details of a
computer's operation is so great that we entrust to it computations the
outcomes of which are completely surprising.

13

14 Introduction

Finally, all physically reasonable formalizations of the process of me-
chanically manipulating symbols that have been thought of have been
shown to be equivalent: they permit exactly the same set of computa-
tions to be performed. This is a consequence of the fact that if a model
system is general purpose enough to be considered a computer, then
it can manipulate a symbolic description of any other computer, and
exactly simulate its operation. In this sense all computers are logically
equivalent. The only difference between the logical capabilities of a
personal computer and a supercomputer (or any of the other models of
computation that we will deal with here) is quantitative: given enough
time and memory, any computer can perform any computation that
any other computer can.

Thus a computation is any sequence of mechanical manipulations of
symbolic data that a computer can perform-it doesn't matter which
computer, since they all perform the same set of computations.

0.2 Compatibility with nature

Most current conceptual models of computation ignore important gen-
eral properties of physical systems. This research deals with finding
and studying new conceptual models of computation which are more
compatible with fundamental physical constraints on computing mech-
anisms.

The most prominent fundamental constraint coming from physics
that is felt today is the finiteness of the speed of light. This constraint
implies that communication paths inside of a computer should be as
short as possible. For maximum speed, we would also like to have
massive parallelism. This motivates us to consider the computational
capabilities of cellular automata: uniform arrays of identical processors,
each communicating only with nearby neighboring processors.

Another constraint concerns heat dissipation, which limits the max-
imum size and density of computers. Just as reversible engines are ide-
ally the most energy efficient engines, logically reversible computations
(which can be implemented in terms of thermodynamically reversible
mechanisms) are ideally the most energy efficient. This motivates us
to consider the computational capabilities of reversible logic.

0.2. Compatibility with nature 15

Before one can contemplate actually building computers based on
reversible logic and cellular automata, it is necessary to demonstrate
that computation is possible in such systems. The compatibility of
computation with cellular automata was first demonstrated by von
Neumann; theoretical objections concerning the compatibility of com-
putation with reversibility were first answered by Bennett. Toffoli dealt
with the combination of reversibility and cellular automata, but not in
a way that could make use of Bennett's technique for making reversible
computations practicable. The first cellular automata models which in-
corporate reversibility in a way which makes computation practicable
are given here.

Constraints arising from quantum mechanics will presumably be felt
as computer elements continue to get smaller. Benioff was the first to
address the question of whether or not a microscopic quantum Hamilto-
nian system can perform exact deterministic computation. He pointed
out that any computer for which the time development is generated
by the Schr6dinger equation must be a reversible computer. Feynman
presented the first convincing time-independent quantum Hamiltonian
model of computation. Here I use one of my reversible cellular automata
models of computation as the basis of explicit quantum Hamiltonian
models, and address for the first time the problem of constructing quan-
tum models of parallel computation. I introduce a simple scheme for
producing models which simulate a synchronous evolution without any
global synchronization, and use this as the basis of a partially successful
parallel model, which points up certain difficulties.

Another major facet of the research presented here deals with com-
puters optimized for the simulation of cellular automata. The reversibil-
ity and quantum mechanical issues are rather far from limiting current
computers, but even in the context of current technology there are enor-
mous advantages in terms of speed, simulation size, and cost that are
available to machines tailored specifically for cellular automata. Toffoli
and I designed the first general purpose cellular automata machine for
use in investigating some of the theoretical models we had constructed.
This machine has had a significant impact on the advent of new physical
models based on cellular automata (such as the recent lattice gas mod-
els of fluid dynamics), and we have arranged for a commercial version to
be made available to investigators. I discuss here the architecture and

16 Introduction

use of this latest version, as well as give a design for the first cellular
automata machine that will be able to perform massive 3-dimensional
simulations (it will have billions of computational degrees of freedom,
each of which will be updated 100 times per second).

Finally, a large number of original results are presented here con-
cerning reversible logic, reversible computation, the construction of re-
versible cellular automata, invariants in reversible cellular automata,
and the applicability of various ideas from physics to the analysis (and
synthesis) of reversible models of computation.

Chapter 1

Reversible logic

In this chapter, I discuss the need for reversible logic, and describe
the reversible models of computation due to Bennett, Fredkin, and
Toffoli. In the course of giving this background, I give a new result in
Section 1.2.5 about the computational capabilities of conservative logic
gates.

I then go on to discuss two original results: the first (Section 1.4)
has an important bearing on the role of energy in certain models of
computation; the second (Section 1.5) shows how, in an appropriate
reversible computational context, a close analogue of the usual thermo-
dynamic argument concerning the maximum efficiency of a heat engine
can be made.

1.1 Irreversibility and heat generation

Thermodynamic questions concerning the need for energy dissipation in
a computation were first convincingly addressed by Rolf Landauer[40]
in the 1960's. What he realized is that logical irreversibility in a com-
putation must ultimately be translated into physical irreversibility in
the mechanism which performs the computation. Erasing a bit of infor-
mation in a computation means that some two-state system which is
part of the computer must be set to its 'cleared' state, without regard
for which of the two possible states it started in. Since the underlying

17

18 Chapter 1. Reversible logic

microscopic dynamics is presumed to be strictly reversible, the infor-
mation which disappears from the computational degrees of freedom
when we erase this bit must be transferred to other degrees of free-
dom. In other words, we must double the number of states available to
the non..computational degrees of freedom, for example by transferring
kT In 2 of work into a heat bath at temperature T. This then is the
thermodynamic cost of erasing a bit in a computation.

Landauer went on to point out that the elementary acts of com-
putation, such as AND and OR, are irreversible functions-there isn't
enough information in the result to reconstruct what the arguments
were. Both of these operations entail erasing more than a bit of infor-
mation, since they each involve two inputs and a single output. Thus
he concluded that computations constructed out of such irreversible
primitives (which were the only kind known at the time) must entail
an unavoidable minimum energy dissipation of the order of kT per
elementary logical operation.

While this is many orders of magnitude less than the actual dissi-
pation of current devices, technology is advancing rapidly. This seems
to present a fundamental barrier which will eventually be confronted.

1.2 Reversible compatation

Independently, Bennett, Fredkin, and Toffoli[7,25,71], for a variety of
reasons, addressed the question of the necessity of irreversible opera-
tions in a computation. Their results have great relevance to our cur-
rent discussion: a clear demonstration that reversible computation was
practicable would eliminate the only known fundamental theoretical
barrier to dissipationless computation.

Clearly any computation can be made to run backwards if we simply
keep a complete history of all past states. Toffoli used essentially this
approach to give a detailed 6xample[72] of a reversible system which
can compute-in the process he gave an important counterexample to
a purported "proof" that cellular automata models of computation (see
Chapter 2) cannot be both universal and reversible[]. 1 This issue will

'Although Toffoli's systems were only shown to be universa computers as long
as the memory space used for recording the history is initially empty, his systems

1.2. Reversible computation 19

be very important in our discussion of physics-like models of computa-
tion, but Toffoli's method of proof doesn't help us much in our present
discussion. All he did was to delay the moment when information is
erased until the time when the computer is cleared in preparation for
the next computation. He didn't show that the amount of information
that needs to be erased (and hence the associated unavoidable min-
imum energy dissipation) could be reduced-this was first shown by
Charles Bennett.

Bennett described a reversible Turing machine. A Turing
machine[82] is a kind of universal computer traditionally used in theo-
retical proofs about computability. It is a particular abstraction of the
idea of a mechanical computation invented by Alan Turing-it formal-
izes the idea of what an unintelligent person could compute by mechan-
ically following instructions, and predates the advent of the electronic
digital computer. A Turing machine has two parts, called a head and
a tape. The tape is a one-dimensional array of cells, each of which can
hold a single symbol, chosen from a finite alphabet of symbols. The
tape is taken to be unbounded- (to eliminate considerations stemming
from a particular memory size) and is always initially blank, except for
a finite region. The head is a movable mechanism, and is always posi-
tioned at some particular cell of the tape. It can be in one of a finite
number of states, and based only on its current state and the symbol
contained in the cell it is at, it obeys a rule which tells it whether to
write a new symbol, and whether to move one position either right or
left. Turing machines are known to be universal computers-they are
logically equivalent to any other general purpose computer in that they
can exactly simulate the operation of any other computer (all univer-
sal computers can perform the same set of computations, given enough
time and memory).

Bennett's Turing machine operated Leversibly at every step-it had
an extra tape used for keeping a history of the computation. 2 Ben-
nett realized, though, that at the end of the computation the answer

obey a dynamics that is invertible when started from any initial state.
2Like Toffoli's machines (which, incidentally, were conceived several years after

Bennett's) this machine operates invertibly started from any initial state, although
it needs to start with a clean history tape (or at least a history tape started in some
standard state) to perform a computation.

20 Chapter 1. Reversible logic

could be copied somewhere, and then the entire computation which pro-
duced this answer could be run backwards, and the history tape would
be restored to its initial empty state without performing any irreversible
operations (this important insight will be discussed in more detail in
Section 1.2.4). Thus the overall computation took about twice as long
as an irreversible version would have, and resulted in leaving everything
exactly as it started, except for a copy of the answer-no unmanageable
accumulation of useless historical garbage occurred. Bennett's mecha-
nism didn't just delay irreversible operations until the moment when
the history tape was cleared-it avoided the logical need for irreversible
operations (and the associated unavoidable dissipation) altogether.3 By
putting the constraint of reversibility (which comes from microscopic
physics) explicitly into his model, he could reorganize the way the com-
putation was done in order to "erase" historical garbage reversibly.4

Turing machines provide a certain abstraction of physical
computability-if a computation can be done by a Turing machine,
it can be done by an actual physical machine. Another abstraction
that is commonly used by electronic engineers is that of logic gates.
Knowing the rules for composing logic elements, machines can be de-
signed which can be expected to work. The logic gate comes closer
than the Turing machine to capturing realistic aspects of physics, such
as the fact that computation can be going on at more than one place
at a time, and that gates must be close to each other if a signal is to
travel between them in a very short time. Thus we expect that an anal-
ysis of computation within the context of reversible logic will provide

3 Except for any irreversibility involved in changing the program in preparation
for the next computation-the number of irreversible operations- needed to do this
is at worst proportional to the length of the program, but independent of the length
of the computation.

4In [8], Bennett discusses a version of such a reversible Turing machine which
operates in a manner analogous to-the genetic mechanism for RNA synthesis. Such
a computer is reversible in the same way that chemical reactions are-the direction
of operation is determined by the relative concentrations of reactants and products.
If a-very small bias away from equilibrium concentrations is maintained in certain
reactant and product molecules, his computer would take almost as many backward
steps as forward steps, and could in principle operate with arbitrarily little dissipa-
tion. tle total dissipation for a given computation is proportional to the average
rate at which the computation drifts forwards.

1.2. Reversible computation 21

a more fundamental insight into issues of computational efficiency. For
this reason I regard Fredkin and Toffoli's demonstration of the ability
of reversible logic elements to perform computations to be of particular
importance. Before we can discuss this in detail, however, we must
make a brief digression into the subject of logic elements.

1.2.1 Universal-sets of logic gates

First we need a definition: a set of binary logic gates is said to be
universal if an arbitrary Boolean (i.e., binary valued) function can be
implemented as a composition of such gates. Some individual gates are
universal-for example, the NAND gate, which implements the following
truth table p qIpNAND q

0 0 1
0 1 1
1 0 1
HI1 0

This gate returns a I unless both inputs are 's. With one input fixed at
a constant (unchanging) value of 1, this gate gives the -NOT function-a
1 applied to the free input becomes a 0, and a 0 becomes a 1. If we
use a NOT to complement the result of a NAND, the function realized
by this composition is the AND function, and has the following truth
table

[p qFpANDqJ
0 0 0
0 1 0
1 0 0

11 1

If instead we use NOT to complement both inputs to a NAND, the com-
posite function is the-oR function, and has this truth table

p q pORq

0 0 0

0 1

22 Chapter 1. Reversible logic

Notice that AND gives the same result as ordinary multiplication of
binary quantities, while OR is the same as addition, except in the il
case-it is traditional to adopt the notation used for multiplication and
addition when writing functions involving AND and OR.

Given an arbitrary set of Boolean input variables (a,, a2,..., a,), we
can write a product term that has a value of I only if a given pattern of
l's and O's appears in the inputs. For example, suppose there are five
input variables, and we want to distinguish the case (a,, a2, a3, a4, as) =

(1, 1, 0,1,0) from all others. The product

ala 2d3a4aS

(where the complement of a binary quantity a is written Z) would have
a value of 1 in the desired case, and 0 otherwise. If we take-an arbitrary
truth table and construct a product term corresponding to each 1 in
the result column, and then add them together, we have constructed
the desired function. Since each product term picks out a different case,
no more than one term will give a 1, and so addition can be replaced by
OR. Thus any Boolean function of any number of inputs can be written
as a composition of AND, OR, and NOT, and hence as a composition of
NAND gates.

In this discussion we have glossed over a point which will be very
important when we move on to the discussion of reversible logic: we
have implicitly assumed that the output of one logic gate can be con-
nected to the inputs of several other gates. This splitting of signals is
referred to as fanout. Real gates have this property, although only a
specified amount of fanout is available before additional gates need to
be used just to get more fanout. In our discussion of invertible logic,
fanout will have to be considered carefully: if we want to allow fanout
to occur by having a single wire split into two, then we must also allow
the inverse operation, where two wires join into one. For this reason,
we will not allow wires to split.

The kinds of circuits we have considered in this section, where the
output is a function of input variables alone (without any feedback) are
referred to as combinational. To turn combinational logic into the more
general circuitry needed to implement a universal computer, we need
to employ a delay element (something for which the output at time

1.2. Reversible computation 23

t + 1 equals its input at time t) and allow outputs to be fed back and
connected as inputs. If our NAND gate is considered to always have such
a delay attached to its output, then NAND is sufficient for constructing
general purpose computers (in fact a line of commercial computers was
actually built that made use only of NAND gates for its logic).

1.2.2 Universal sets of reversible gates

We begin with Landauer's observation that traditional logic elements
are irreversible. One obvious problem is that they have two inputs and
one output: no gate which has fewer outputs than inputs can be invert-
ible (assuming both input and output values are taken from the same
state set, and there are no constraints on allowed input combinations).
This leads us to consider gates which have equal numbers of inputs and
outputs. With two inputs, two outputs, and binary variables, there are
256 possible truth tables. Since a reversible function must map each
distinct input case onto a distinct output case, each reversible function
with two inputs is a permutation which maps a set of four elements

(0,0) (0,1) (1,0) (1,1)

onto itself. Thus only 24 of the 256 possible truth tables represent
invertible functions. If you enumerate all invertible 2-input/2-output
functions of Boolean variables which can be constructed using only a
composition of xOR gates (gates which return the sum, modulo 2, of
their two inputs), you find that there are 24-thus these are all of the
invertible functions we are considering. But any combination of XOR
gates is a linear function of input variables. For example, a typical
output of such a function might be given by

a1 ED a5 E a9 91

where E denotes addition modulo 2. For any such function, the output
either doesn't depend on a given input variable at all, or else the out-
put changes whenever that input is changed while all other inputs are
held constant. No such function can reproduce the NAND table (which
requires input cases which differ in a single variable to produce the

24 Chapter 1. Reversible logic

same output) for any pair of its inputs, and so our set of 24 invertible
2-in/2-out gates fails to be universal.

We must therefore widen our search for invertible logic gates. We
can either consider gates with more inputs (and outputs), or gates
with more states. With three inputs and using Boolean logic, there are
eight possible input cases; with two inputs and using ternary (3 state)
logic, there are nine possible input cases. Here we will only look at the
Boolean case, which is the one that Fredkin and Toffoli considered.5

1.2.3 The Toffoli gate

Once we consider gates with three inputs, there are many gates which
are universal by themselves, just as the NAND was in the domain of
irreversible logic. A simple example is Toffoli's AND/NAND gate, which
has this truth table:

p q r p' q' r'
0 0 0 0 0 0
00100 1
0100 1 0
0110 1 1
100100
101 1 0 1
1101 1 1
111 1 0

In this gate, p and q go through unchanged, while the AND of these
inputs is XORed (added modulo 2) to r to produce the third output.
This is invertible, and is in fact its own inverse (if you connect p', q' and
r' to the corresponding inputs of a second gate, the overall function will
be the identity function). By holding r fixed at 1 you get the NAND
function of p and q at r', and by connecting constants of 1 to q and

5When considering logic with more than two states, it is sufficient to discuss
the construction of Boolean functions in order to demonstrate universal computing
capability-the third state may be used within circuits which use only two of the
three states for inputs and outputs. Using this idea, very simple circuits based on
appropriate reversible ternary logic gates with two inputs can be used to simulate
universal reversible binary gates with three inputs, and hence prove-the universality
of the ternary gates.

1.2. 'Reversible computation 25

0 to r, you find that both p' and r' are copies of p, and so this gate
can provide fanout. Timing delays can be associated either with the
gates, the wires, or both-in any case we conclude that Toffoli's gate
is a universal logic element.

1.2.4 Conservative logic

Fredkin's approach to the same problem was this: he noted that he had
many possible choices for a 3-in/3-out invertible logic gate, and so he
decided to add another constraint which was intended to make it easier
to find a physical realization of his gates. He required that in every
case the number of l's in the output must equal the number in the
input, and called the resulting kind of logic conservative logic. With
three inputs there are 36 distinct invertible gates of this sort: there is
no choice for the cases where the input contains three 0's or three l's;
there are 3! = 6 ways to permute the three cases containing a single 1
and similarly six for the single 0 cases. If, however, we don't distinguish
between gates that are equivalent up to a relabeling of the input and
output signals, then there are actually only three distinct gates that
are possible. With the inputs and outputs named as above, these are:

9 the identity gate, for which p' = p, q' = q and r' = r,

e the Fredkin gate, for which p' = p, and the other two signals either
go through unchanged (if p =1) or are interchanged (if p =0).

0 the SMP gate (symmetric majority/parity gate), a gate that
cyclicly permutes all inputs one way if the input count is even
(p' = q, q' = r, and r' = p), and the opposite way if it is odd.

Both the Fredkin gate and the SMP gate are universal logic ele-
ments, but the former is perhaps a little easier to work with, and so
we will concentrate on it (the SMP gate will be mentioned again in

26 Chapter 1. Reversible logic

p p
P ." -"

r

Figure 1.1: The Fredkin Gate. All three inputs go straight through unless p
is a zero, in which case q -, r' and r -+ q'.

Section 1.4). Here is the truth table for the Fredkin gate:

(p q rp' q' r'

0000 0 0
0010 1 0
010 0 0 1
011011

1010101101 1 0 11

1101 1 0
111 1 1 1

Graphically, this gate is represented as in Figure 1.1. If r is given a
constant (unchanging) value of 0, then r' has a value given by pq (i.e.,
/3 AND q) while q' has a value of pq (i.e., p AND q). If in addition we let
q =1, then these become r' = and q' = p. Thus we have available the
AND, NOT, and FANOUT functions, as we must for this to be a universal
logic element.'

Although we have used constants rather freely in our previous dis-
cussions, the constraint of conservation suggests that we think of our

6'Ve also have other traditional functions available in a direcL way. For instance,
Y, Ias ,, .r %Ihe , o,,fntosaalbei iel a.Fris,

if r is a constant of 1, then r' gives p + q (i.e., p OR q); if r = q, then r' gives p E q
(i.e., p XOR q).

1.2. Reversible computation 27

Azt

delay Yt Zt-I E Yt-I

FAN-OUT NOT AND OR FAN-OUT

1)-L_-i 0)l _J-i)- r

-~~~ --l e 't- u-

FAN-OUT NOT AND OR FAN.OUT

Figure 1.2: Two circuits which both compute the same function. The first
is an ordinary sequential circuit made of irreversible gates; the second is a
transcription of this circuit into Fredkin gates.

constants a little differently than with nonconservative logic. A con-
stant of 1 adds a 1 to our circuit at every time step (which is determined
by our smallest element of delay), while a constant of 0 adds a 0. This
will be important when we discuss physical realizations of conserva-
tive logic, since signals will have energy associated with them, and so
maintaining a constant may involve a constant input of energy.

Given any combinational irreversible logic circuit, we can now (in
a rather straightforward manner) transcribe it into a circuit involv-
ing Fredkin gates, but we will have a large number of extra outputs
which weren't part of the original circuit-these extra outputs which
are needed only to-make the overall logical function invertible have been
te dgar.agc. igure 12b shows a conservative logic circuit which
is a transcription of the conventional-logic circuit of Figure 1.2a. The

28 Chapter 1. Reversible logic

symbol t> on a wire in the conservative logic circuit indicates a unit of
delay between the point before the t>, and the point after it (the t>
points in the direction in which signals flow when the circuit is operat-
ing forwards). Both circuits compute the sum, modulo 2, of a stream
of bits which appear at the input xt; outputs labeled ? in Figure 1.2b
are garbage, and each arrow on a wire indicates a unit delay (output at
time t + 1 equals input at time t).

Since we can, in a similar manner, transcribe any conventional cir-
cuit into a conservative logic circuit, this type of logic is clearly sufficient
to construct computers; but we haven't really arrived at our objective
yet. Something must be done with all these garbage signals. If we
simply erase them, then what we have done is certainly no better than
conventional irreversible logic. Instead, we will adapt the idea that
Bennett used in his reversible Turing machine, to eliminate essentially
all of these extra outputs.

Bennett's argument made use of the notion of an inverse computa-
tion. Given any conservative logic circuit, such as the one of Figurel.2,
we can construct the inverse circuit by reversing the motion of all sig-
nals (i.e., the direction of all arrows), interchanging the roles of-inputs
and outputs, and converting all gates into inverse gates (since a second
permutation undoes the first, the Fredkin gate is its own inverse, just-as
the Toffoli gate was). If such a 'mirror image' of the circuit of Figure 1.2
is connected to the direct circuit (with appropriate delay elements so
that all signals arrive at the inverse circuit at the right moments), then
the net effect of the circuit will be to compute the identity function:
the input xt will be reproduced, and all of the constant inputs used to
make the Fredkin gate act like an irreversible gate will be reconstituted,
and can be fed back to be reused.

So far we have a rather elaborate scheme for doing nothing. But
somewhere in the middle of this circuit is the sum modulo 2 of the
input-if we add a fanout element at that point, then we have the
circuit of Figure 1.3. The overall action of this circuit is to convert the
input stream x1 plus a constant of 0 and a constant of 1 into a copy
of the input x'-u and two copies (one of them complemented) of the
'answer,' yt-i = xt-6eyt- 6. We get the answer with only one extra step
of computation delay compared to the circuit, of igure 1.2 ?I% nly
needed to copy it. The reconstituted input, however, has the delay

1.2. Reversible computation 29

o ? ? 0
o0 ? ? 0oo _ _ _ _ ? _ _ o

0 ? _ _ ? 0_o0 ___-__ o0 ? _ _ _ o
0 ?~

Figure 1.3:

associated with both halves of the circuit. Any computation can be
treated similarly.7

As in Bennett's construction, we were able to reorganize the compu-
tation in a way that minimized the production of garbage. Any garbage
that is not cleaned up during the computation will eventually have to
be erased irreversibly, with a concomitant unavoidable thermodynamic
cost per bit. Thus reversible logic allows us to reduce the amount of
unavoidable dissipation from one that is proportional to the number of
logical operations (as it always is in a cicuit composed of irreversible
logic elements) to one that is independent of the size of the circuit and
the length of the computation, and at worst proportional to the number
of non-constant inputs.

Given the algorithm we were using in Figure 1.2, our reversible
circuit couldn't have gotten the answer any faster, but none of the
original constants were reconstituted until we had the answer, and so
we needed a maximum number of constants. If we performed partial
reversals at intermediate points, the time before we had the answer
would be longer, but the computation would need fewer constants at

the input.

7Likharev, in [43], describes the use of reversible gates based on thermodynam-
ically reversible Josephson junction devices. He concludes that these devices have
sufficiently short relaxation times that switching speeds of 10- 9 seconds can be
achieved with a dissipation of O.ikT. Ressier[62] gives a logical design for a con-
servative logic computer.

?

30 Chapter 1. Reversible logic

1.2.5 Other conservative logic gates

With 3 inputs and 3 outputs, we noticed that all (reversible) conser-
vative logic elements which could not be transformed into the identity
element by a relabeling of outputs are in fact universal. This property
actually holds for conservative Boolean functions with any number of
inputs (and outputs), as we will now show.

Consider a conservative logic gate with n inputs labeled a,, a2, etc.
Let b, be the output that is a 1 when only a, is a 1 (and all other inputs
are O's), and similarly b2, etc. (Since each such input must map onto
a distinct output case, we can always do this). With this labeling, all
gates that are equivalent to the identity gate have b, = a,, b2 = a2, etc.,
for all possible input cases. We will call all gates that are equivalent
to the identity gate under such a labeling trivial gates-they could be
replaced by separate wires.

If a gate is non-trivial, then for some input there must be a k such
that ak 0 bk. Consider an input case involving the smallest number of
l's for which there is such a k. Because of the conservation of the input
count, this input case must have at least two places that differ from
the output, one of which is a 1; thus we can without loss of generality
assume that for this input case, a, 0 bl, and a, = 1. Our definition
of the b's implies that no case involving a single 1 has a difference
between input and output, and so we can assume, again without loss of
generality, that a2 = 1 in this case. Thus we can write the truth table
for a, and a2 (holding all other inputs constant)

a, a 2 1]

0 0 0
0 1 0

1 0 1
1 1 01

Since the case a, = a2 = 1 was one involving the fewest I's for which
input and output differ, the first three entries for b, must have the values
show. This is the truth table for aT1 2 (al AND d2), which can be used
to perform NOT (with a, a constant of 1) and AND. To demonstrate
fanout, we need only note that in the case a, = a2 = 1, since b, = 0
there must be some output which we'll call b3 (distinct from b2) which

1.3. The Billiard Ball Model 31

is a 1, even though a3 is a 0. Thus

Sal a2 a3 bl,__3

1 1 0 0 1

and so if we let a, = 1 and a3 = 0, then we get bl = a2 and b3 = a2.
Thus we've proven the universality of all non-trivial Boolean con-

servative logic gates, but we're not quite finished. The construction of
Section 1.2.4 that we used to erase garbage depends upon the availabil-
ity of an inverse logic gate; we will show that we can always construct
such an inverse gate.

Given a reversible logic gate G, we can form a new gate Gn by con-
necting together n gates: the outputs of one gate to the corresponding
inputs of the next. Since G performs a permutation on the possible
input cases, for some power m, G- is the identity function. Thus Gm- 1

is the inverse of G.

1.3 The Billiard Ball Model

In order to be sure that a computational model is consistent and com-
plete, we would like to be able to find a physical system that, in a
suitable idealization, obeys that model. The model that Fredkin-found
for conservative logic is that of a gas of hard spheres.

The Billiard Ball Model (BBM) is a Classical Mechanical system,
and obeys a continuous dynamics-positions and velocities, masses and
times are all real variables. In order to make it perform a digital compu-
tation, we make use of the fact that integers are also real numbers. By
suitably restricting the initial conditions we allow the system to have,
and by only looking at the system at regularly spaced time intervals,
we can make a continuous dynamics perform a digital process.

In this case, we begin with a 2-dimensional gas of identical hard
spheres. If the center of a sphere is present at a given point ill space
at a given point in time, we will say that there is a 1 there, otherwise
there is a 0 there. The i's can move from place to place, but the total
number of l's never changes.

32 Chapter 1. Reversible logic

AB

All

AB

13?XAB

Figure 1.4:

The key insight behind the BBM is this: every place where a col-
lision of finite-diameter hard spheres might occur can be viewed as a
logic gate. What path a ball follows depends upon whether or not it
hits anything-it makes a decision.

To see how to use this decision to do Boolean logic, consider Fig-
ure 1.4. At points A and B and at time ti, we either put balls at A,
B, or both, or we put none. Any balls present are moving as indicated
with a speed s. If balls are present at both A and B, then they will
collide and follow the outer outgoing paths. Otherwise, only the inner
outgoing paths will be used.

At time t = ti, position A is a 1 if a ball is there, and 0 otherwise
(similarly for position B). At t = tf, the four labeled spots have a ball
or no ball-which they have is given by the logical function labeling
the spot. For example, if A = 1 and B = 0, then the ball coming from
A encounters no ball corning from B, and ends up at the point labeled
"A and not B".

1.3. The Billiard Ball Model 33

ca) (b)

Figure 1.5: Interaction gate. When used backwards, the inputs must be
suitably constrained.

Thus a place where a collision might occur acts as a reversible,
i-conserving logic-gate, with two inputs and four outputs. Such a col-
lision is shown schematically in Figure 1.5 as a logic gate-called the
interaction gate. This same schematic symbol can be used with models
that involve an attractive interaction (c.f. Section 2.7.1) if the order of
the outputs is disregarded.

A path that may or may not contain balls acts as a signal-carrying
wire. Mirrors (reflectors) allow bends in the paths. In order to be able
to use the outputs from a collision "gate" as inputs to other such gates,
we need to very precisely control the angle and timing of the collisions,
as well as the relative speeds of the balls. We make this simple to do
by severely restricting the allowed initial conditions.

Each ball must start at a grid point of a Cartesian lattice, moving
along the grid in one of 4 allowed directions. All balls move at the
same speed (Figure 1.6a). The time it takes a ball to move from one
grid point to another we call our unit of time. The grid spacing is
chosen so thai balls collide while at grid-points. All collisions are right
angle collisions, so that one time-step after a collision, balls are still on
the grid (Figure 1.6b). Fixed mirrors are positioned so that balls hit
them while at a grid point, and so stay on the grid (Figure 1.6c). By
using mirrors, signals can be routed and delayed as required to perform
digital logic.

34 Chapter 1. Reversible logic

B A

ig I u 1 I

Figure 1.6:

B/ 'A

Figure 1.7:

1.3. The Billiard Ball Model 35

r

Figure 1.8: Fredkin gate, built out of interaction gates.

The configuration of mirrors shown in Figure 1.7 solves the problem
of making two signals cross without affecting each other. (Notice that
if two balls come in together, the signals cross but the balls don't!)

Mirrors and collisions determine the possible paths that signals may
follow (wires). In order to ensure that all collisions will be right-angle
collisions (and not head-on, for example, which would take us off our
grid) we can label all wires with arrows, and restrict initial conditions
and interconnections so that a ball found on a given wire always moves
in the labeled direction.

Thus our universal gates can be connected as required to build a
computer. Computations can be pipelined-an efficient assembly-line
way of doing things, where questions flow in one end and finished prod-
ucts (answers) flow out the other, while all the stages in between are
kept busy.

Figure 1.8 shows (schematically) the Fredkin gate built out of six
interaction gates, three of which are used backwards. Trivial crossovers,
in which the logic of the situation ensures that the two paths will never
be simultaneously occupied, are indicated by wires that simply cross-
the bridge symbol at a crossover point indicates that explicit provisions
for a crossover must be made.

This then, in brief, is the BBM. Kinetic energy is conserved, since
all collisions are elastic. Momentum is-not conserved, since the mirrors
are assumed to be fixed (infinitely massive). Since we have shown that

36 Chapter 1. Reversible logic

Fredkin gates are directly physically implementable (in this idealiza-
tion), circuits built out of Fredkin gates can now be thought of as the
schematics for a BBM circuit.'

1.4 Bit-conserving functions

In Section 1.2.4, we gave a proof that reversible logic can be used to
perform any computation. This proof was based on the idea that any
irreversible combinational circuit can be transcribed into a reversible
logic circuit, with extra constant inputs and extra (garbage) outputs.
The garbage outputs are then turned into constants by an inverse circuit
which undoes everything except for a copy of the answer, which is
retained. These reconstituted constants can then be recirculated and
connected as inputs, so that a fresh supply of constants doesn't have
to be continually provided from outside of the circuit. All of the non-
constant inputs are output along with the answer.

In this section we will show that any invertible, bit-conserving (i.e.,
sum of inputs conserving) function can be implemented directly in
terms of Fredkin gates without producing a copy of the non-constant
inputs as part of the output. This result was first demonstrated by D.
Silver; the method used here will simultaneously show that only recir-
culating constants of one kind (all I's or all 0's) are needed in such
circuits.

An immediate corollary of this new result will be that circuits in
the billiard-ball model of computation and its various cellular automata
analogues (Sections 2.4 and 2.7.1), need have no recirculating constant
streams of balls. In this or any similar "physical" implementation of
conservative logic wherein l's are represented by an energetic signal,
while O's are just empty space, the essential role of constants is to
provide extra space for the computation-the energy in the inputs to
a bit-conserving function is always sufficient to actually perform the
computation.

8There are of course other possible physical realizations of conservative logic
gates.

1.4. Bit-conserving functions 37

01

A - 1 2[- 10
B 11

11

Figure 1.9: Interaction Gate. Each output line is labeled by the input case
that makes it non-zero.

1.4.1 Outline of the Proof

It is clear from Figure 1.1 that if we take any circuit constructed from
Fredkin gates and everywhere interchange the connections to each pair
q' and r', then the new circuit obtained by this proccess will be logically
equivalent to the original circuit, with the role of l's and O's in the
input and output interchanged. Because of this duality between the
roles played by l's and O's, we can without loss of generality consider
the case where only constants of 0 are to be used.

Our proof will consist of two parts:

I. Any invertible bit-conserving function can be built using a general-
ization of the conservative-logic interaction gate.

II. This generalized interaction gate can always be built from Fredkin
gates, making use only of 0-constants.

1.4.2 A generalization of the izteraction gate

The interaction gate (see Section 1.3) acts as a demultiplexer which
conserves the number of l's in the input: Corresponding to each non-
zero input state involving exactly k i's, there is a set of k output lines.
These lines are all l's if the corresponding input state occurs, and are
all O's otherwise.

With two inputs, there are three possible non-zero input combina-
tions, only one of which involves two l's. Thus we require four output
lines (see Figure 1.9). Beside each output line, I've indicated the in-
put state for which that line will be a 1-the output lines have been

38 Chapter 1. Reversible logic

CIOU

Olt

100
A
B 13 101

-- 101
110
110

-- 111

--111

111

Figure 1.10: A 3 line bit-conserving demultiplexer

arranged so that these labels (interpreted as binary numbers) are in
numeric order.9

With three inputs there are seven possible non-zero input combina-
tions, and we require 12 output lines (see Figure 1.10). If ABC = 101
then both the sixth and seventh output lines will be l's, all other output
lines will be O's. Similarly for all other input combinations.

In general, we require one output line for each input state containing
a single 1, two output lines for each input state containing two l's, etc.
Thus for I,, the interaction gate with n inputs, we require

output lines.
Given an arbitrary bit-conserving invertible function, we can di-

rectly implement its truth table using two interaction gates. For exam-
ple, consider the SMP gate described in Section 1.2.4-its truth table

9This order is different from that of Figure 1.5, but only trivial crossovers are
needed to go from that figure to this one.

1.4. Bit-conserving functions 39

001 001
ABC XYZ 010 010

011 011"--

000 000 011 011

001 100 A 100 100

010 001 A - 101 lot
O 101 101 3 -

100 010 C 11 0"-- Z

110 110101 011- 111 111 --

III

111 111

Figure 1.11: SMP gate realized by 13 gates

and its implementation in terms of two 13 gates is given in Figure 1.11.
We have assumed in this construction that the mirror image circuit to
I, is a circuit that performs the logical inverse of I, which multiplexes
its inputs-in the next section we will note that this is indeed the case
when we build the I,'s out of Fredkin gates. Since any set of k out-
put lines corresponding to some input state can be connected to the
lines leading to any other state containing k l's, we can construct any
bit-conserving function in this manner.10

'0 Since only wires corresponding to distinct input cases need to cross, no special
provisions are needed at crossov(;rs.

40 Chapter 1. Reversible logic

1.4.3 Building interaction gates out of FRedkin
gates

We can consider In to be a conservative logic gate having n2n- 1 inputs
and an equal number of outputs: of these inputs, all but n are constant
O's, and are not shown in the schematic symbol for In.11

I, acts as a 1-conserving de-multiplexer for n inputs. Corresponding
to each non-zero input state, there are a set of output lines which are
all l's for that input, and all O's otherwise.

Given any In, we can construct In+1 using Fredkin gates. This is
done by considering the cases where the n + 1st input is a 0 separately
from those in which it is a 1. Since I, is just a wire, establishing this
induction shows that all In's can be constructed out of Fredkin gates.

We will use the cases n = 2 (Figure 1.12) and n = 3 (Figure 1.13)
as examples, to illustrate the construction.

In each case, the circuit is drawn in four sections, numbered from
1 to 4. The inputs are labeled A1, A2, ... ,A and the outputs have
b drawn around them.

(1) In-I demultiplexes all of the inputs A1 to An- 1. The rest of the
circuitry is used to add in the extra input An.

(2) Input An is used to split each of the outputs of In-, into two new
outputs-the cases where the input is extended with a 0, and the
cases where it is extended with a 1. If An is 0, then our output
should have exactly one output corresponding to each output of
In-,-these are the bottom row of boxed outputs in this section
of the circuit. If I, is a 1, then each output of I,- that came from
an input containing k l's has been extended to correspond to an
input containing k + 1 l's. Thus a representative of each input
case must be sent down to section (3) of the chcuit to be copied.
All other demultiplexed outputs may be output immediately-
middle row of outputs in this section of the circuit.

"1We can take advantage of the fact that we are only interested in specifying
what happens in the cases where certain input lines are constant O's to find a
simple implementation-this is an advantage of such constrained or underspectfied
logic (mathematicians would call this a partial function).

1.4. Bit-conserving functions 41

A2

11 (2)

Figure 1.12: Constructing I,, out of I,- and Fredkin gates, n =2.

42 Chapter 1. Reversible logic

fl1~ 01
A 1 10

i ~ ~I t ' -; -

A 3

A' --qli lot- l >-

lot (3)

(4)

Figure 1.13: Constructing I,, out of I,-, and Fredkin gates, n = 3.

1.4. Bit-conserving functions 43

(3) Since no inputs to any of these gates will be non-zero unless A,
is a 1, we can think of An as being a 1 in analyzing this section
of the circuit. Since the controlling signals for these conditional
exchanges correspond to mutually exclusive input conditions, we
are able to pass our constant of 1 through all of them and at most
one of these will use it up making a copy.

(4) Finally, there is one case that doesn't correspond to any case for
which In-1 produced a 1 at some output-this is the case where
all inputs to I,- were O's. In this case A, has run through every
gate in this circuit and now appears as a 1 at the bottom output
of the last gate.

This method allows us to construct I,, from a given I,-, and so, by
induction, our assertion is proved.

1.4.4 Corollary

This proof allows us to settle an interesting question about circuits in
the billiard-ball model of computation (Section 1.3), and the cellular
automata (Sections 2.4 and 2.7.1) modeled after it.

Fredkin's original proof of the universality of the BBM (given in
Section 1.3) showed that the BBM could implement any bit-conserving,
invertible function. The construction used in this proof required some
number of streams of balls (constant l's) to be supplied as extra inputs
to the circuit implementing the function, which were used at some
intermediate place in the circuit, and finally regenerated and output as
constant l's along with the results of the computation. Thus these extra
l's could be fed back from the output to the input, and recirculated-no
extra l's needed to be fed into the circuit from the outside.

As we saw in Section 1.3, one can construct a Fredkin gate from
billiard-ball collisions (interaction gates) without any recirculating l's.
Thus a CoMollary of our . - for Fredkin gates above is that recirculated
l's are never required in the BBM.

44 Chapter 1. Reversible logic

1.4.5 Discussion

In the BBM, constants of 0 have a special status, since 0's are repre-
sented by empty volume, and so are free of the concerns associated with
constants of 1 such as arranging appropriate crossings with other sig-
nals and setting up extra mirrors to keep them on some closed path in
order to recirculate. Thus it is quite convenient to know that constants
of 1 are never required.

The way we have found of avoiding the need for constants of 1
is to use the constants of 0 to provide places for the signals in the
input to spread out, until all possible input cases are represented in
separate places, at which point the function we wish to implement
can be constructed as a lookup table-each input case is wired to the
appropriate output case (Figure 1.11). In practice we can usually get by
without demultiplexing all cases, but for a random invertible mapping
this is what we would have to do 12 .

Although we have seen that constants of 1 are not essential in imple-
menting bit conserving functions, they can be very useful. We can often
decrease the computation-delay (the time from when the inputs go in
to the time the results come out) by using constants of 1, which allow
us to make copies of the inputs and of intermediate results, allowing
portions of the computation to proceed in parallel.

1.5 Logical heat

When we introduce constraints into our models of computation, it may
become possible to make strong global statements that couldn't be
made before. If these constraints are artificial, then any newfound
ability to make such statements is spurious.

Reversible logic adds the important constraint of reversibility that
is shared, as far as we know, by the dynamics of all microscopic phys-
ical systems. In a reversible model such as the BBM, we also have an
additively conserved quantity (the number of balls) which can be iden-
tified with the kinetic energy of the system. We will show that in an

12Of course all forms of logic have a similar problem with random Boolean
functions.

1.5. Logical heat 45

p p't -.t-
Black
Box

P+A P-A

Figure 1.14: A BBM circuit with two inputs where l's arrive at each time-
step with probability p.

appropriate context, these two constraints together can play the role of
the first two laws of thermodynamics.

The example we discuss is the construction of circuits in the BBM
which reclaim some of the energy (balls) tied up in representing un-
wanted information (garbage). Although we have shown that garbage
can eventually be eliminated, and constants restored, by a mirror cir-
cuit technique, we assume for the sake of this discussion that we have
some signals for which this technique cannot be applied (we will discuss
at the end some situations in which this would be the case). We will
show that there is a maximum efficiency with which any BBM circuit
(however constructed) can perform this task, which is closely analogous
to the maximum efficiency of an ordinary heat engine. We will then
generalize our arguments to show that a similar discussion can be made
using any computational model based on reversible logic.

1.5.1 The Impossible Box

Reversibility imposes a strong constraint upon circuits which must deal
with random sequences of inputs. Consider for example the schematic
BBM circuit in Figure 1.14. This hypothetical circuit has inputs con-
sisting of two random sequences of l's and O's. The probability that

46 Chapter 1. Reversible logic

any given element of one of these sequences is a 1 is p, the probability
of a 0 is 1 - p. At each time step, the next element in these input
sequences enters our circuit.

Given these inputs, our circuit is supposed to produce two output
sequences, one of which has (on the average) a fraction p + A of l's,
and the other a fraction p - A. In order to accomplish this, we are
free to put any BBM circuitry whatsoever inside of the black box-it
can have feedback and recirculating constants; it can even contain all
the circuitry of a general purpose computer. Our question is, can we
design a circuit which does what we've described?

The desired circuit would conserve energy: on the average, just as
many balls would come out as went in. But the fact that any BBM
circuit must be invertible imposes an additional constraint that this
circuit fails to meet. In a given number N of time steps there is some
number

of distinct possible input sequences that will enter our circuit. With
unequal output frequencies, there are fewer distinct output sequences
possible. Since no invertible function can map a large number of input
possibilities into a smaller number of output sequences, no finite BBM
circuit can do what the circuit of Figure 1.14 does indefinitely.

As an extreme case, think of the situation with p = 1/2 and
p + A = 1, p - A = 0. Here, no matter what sequence comes in,
we output constants. None of the information in the inputs is recorded
in the outputs, and so we will have trouble if we want to run this sup-
posedly reversible system backwards.13 If we constructed a reversible
circuit that seemed to be doing this, then we could be sure that the
missing information must be accumulating inside the black box. If we
redraw this circuit a bit (Figure 1.15) we see that asking us to construct
this circuit is much like asking us to construct a Maxwell Demon: the
two loops are like two one-dimensional boxes of gas, initially at equal
pressures. The Demon can't create a pressure difference because of

3 To run it backwards we would of course have to reverse the motions not only
of the input and output streams, but also of all particles inside of the black box.

1.5. Logical heat 47

Demon

Figure 1.15: A Maxwell demon, creating a 'pressure' difference between two
vessels initially at equal pressure

invertibility.
14

1.5.2 Temperature

We would like to develop an analogy between possible and impossible
circuits with probabilistic sequences of input values, and possible and
impossible heat engines in thermodynamics. For this purpose, we will
define the quantities which will play the roles of entropy and tempera-
ture in this analogy.

Given any circuit which has inputs each of which is a random se-
quence with a probability pi for a given element to be 1 and 1 - Pi for
it to be a 0, then the average information-theoretic entropy entering
each input during each time-step is15

= -pi log 2 A - (1 - p)log 2 (1 - pi)

14It was Edward Fredkin who pointed out-to me that such a circuit is impossible,
and is analogous to a Maxwell Demon.

5This is just the limit as N -+ oo of the log2 of the number of sequences of length
N consistent with this probability assignment, divided by N.

48 Chapter 1. Reversible logic

If some set of outputs of this circuit are all pseudo-random sequences
with probability po for a 1 and 1 - P, for a 0, then the average
information-theoretic entropy leaving each output during each time-
step is

AS < -p log po - (1 - p) log2 (1 - Po)

with equality only if all correlations are neglected. Since we will be
considering situations in which as much information as possible is put
into each output, we can assume that the equality holds, and also that
all outputs are uncorrelated.

For input or output wires which carry a signal which is not a con-
stant, we form the intensive ratio

AS plog2 p-+ (1- p) log 2(1- p)

of the average number of balls (energy) that pass a given point per unit
of time, divided by the entropy carried past that same point by this
energy flow in a unit of time. This ratio T is a measure of how effi-
ciently balls which appear in the given wire are being used to represent
information. (Notice that this temperature is a property of a wire, and
not of an individual ball.)

1.5.3 Reclaiming Balls

We will consider the problem of designing circuits which take as in-
puts probabilistic sequences of l's and O's, and produce as outputs
some number of constant streams of l's, along with a set of probabilis-
tic output sequences. This is an alternative way of producing some
constants of 1 in situations when the mirror circuit technique of Sec-
tion 1.2.4 isn't appVl cable. Given our statistical assumptions, we would
like to investigate the maximum efficiency with which any BBM circuit
can produce such constants.

For the purposes of the analogy we are drawing, we will call a con-
stant stream of l's work-such a stream consists of maximally avail-
able energy (the balls have energy, yet they represent no entropy, since
b ch . :_ Mote As an ". . h ch constants are very ,iu" 1 in

the BBM-they allow copies of inputs and intermediate results to be

1.5. Logical heat 49

T N T L

Figure 1.16: Hot (ball-rich) inputs come in from the left, cooler (ball-poorer)
outputs leave to the right, while some number of streams of balls (constant
1's) leave from the bottom

made, thus permitting parallelism to speed up computation. They also
simplify logic, and allow it to be more compact, and more similar to
conventional irreversible logic.

Suppose for simplicity that we have some number of inputs with
a high probability PH of being Vs. We could produce some number
of outputs with a lower probability pL of l's, plus some number of
outputs which are always 1. (Our circuit would need to allow for sta-
tistical fluctuations, but this is not a problem, as we can easily design
circuitry that acts like a ball-reservoir). The situation is illustrated in
Figure 1.16.

It is apparent that we must always have TH > TL, since the inputs
and the outputs both represent the same entropy, but the outputs do
it with fewer balls. It is also clear why we can't convert all of the input
balls into useful work: we would have no balls left to remember which
particular pattern of inputs arrived at TH.

If we let ASL be the average total entropy that comes out at TL
during each time step, and ASH the total entropy which enters at TH
during each step, then we must have ASL > ASH because of the re-
versibility of the process.16 Letting AQH and AQL be the average total

6Under our assumplions, ASH exactly characterizes the size of the input ensem-
bWe for along sequence of input values. On the other hand, ASL is a coarse grained
entropy which neglects possible correlations: it may overestimate the size of the

50 Chapter 1. Reversible logic

numbers of balls entering and leaving in each time step, and recalling
our definition of temperature as the average number of balls per bit in
a given input or output wire, this entropy constraint implies that

AQL > AQH

TL TH

If we let AW be the number of constant outputs produced by our
circuit, then on the average we must have

AQL = AQH - AW

because of the conservation of billiard balls (or equivalently the conser-
vation of kinetic energy). If we put these two constraints together we
have AQL _ A (1 .T)

W=AQ(1 < AQ(TH

Under the statistical assumptions given, no BBM "heat engine" circuit
can have an efficiency AW/AQH that is greater than (1 -TLITH). This
is the greatest fraction of the balls in the inputs which can be converted
into constants.

1.5.4 Generalization

The constraint that the information at the output cannot be less than
that at the input of course applies generally to all reversible logic func-
tions. For an unconstrained reversible function, we have also seen that
the number of inputs must exactly equal the number of outputs. This
additive constraint can play the role that energy did in the discussion
above, to give an inequality that applies to any unconstrained (i.e.,
completely specified) reversible function.

We begin by giving a new definition for AW. In all reversible logic,
constants allow reversible gates to simulate irreversible gates, as we
saw in Sections 1.2.3, 1.2.4 and 1.2.5. If no signal reclamation were
done, energy would eventually have to be dissipated in order to clean
up corrupted "constants" that were used in this manner. Thus the

output ensemble. f' all correlatioiis were 'aken ito account, we would of course
always have an equality.

1.5. Logical heat 51

number of constant outputs that come out of any "heat engine" circuit
is related to the energy that we are reclaiming, and we will call this
quantity AW.

It is "number of signalling lines" that is additively conserved, and
so if we let AQin be the number of inputs that come into our circuit
at every computational step, and AQout the number of information-
carrying (i.e., non-constant) outputs, then

AQout = AQin - AW

Assuming every input has the same set of probabilities Pi of being in
each possible state k, and similarly for the information carrying outputs
and hPout, we let

-1

k log i

and similarly for Tout. Thus temperature is defined to be the average
number of input lines used to represent a bit. Next, we see that the
entropy in the input is given by

ASin = AQin
inin

Tin

(and similarly for ASout). Since ASout > ASin, we again have

AW-= Ain(1 -AQout) < AQin(1 - Tout)

AQin n in

just as before. With our present definitions of temperature and work,
this inequality holds for all unconstrained reversible logic functions. In
particular, it will hold for reversible cellular automata.

1.5.5 Discussion

We have investigated the extent to which circuits which are designed
to work for inputs which are random sequences can produce outputs
which are constants. When might such circuits be useful?

A simple situation where one might want to "concentrate random-
ness" might arise if some of our reversible circuitry had to perform error

52 Chapter 1. Reversible logic

correction operations which were relatively rare: this would result in
some output of the correction circuitry being essentially (but not ex-
actly) constant. In compressing these error records into fewer signals,
we would be limited by the constraints discussed above.

Probably the most interesting situation where our logical heat en-
gines might come into play would be within reversible cellular automata
(Chapter 2). These systems can be studied as autonomous digital
worlds in which complexity and structure can arise. The usefulness
of heat engines to processes running in these cellular automata worlds
seems to me to be rather similar to their usefulness in our world.

Chapter 2

Reversible cellular automata

Cellular Automata (CA) are computer-models that embody discrete
analogues of the classical-physics notions of space, time, and locality.
Their physics-like structure maps very naturally onto physical imple-
mentations, making possible extremely efficient hardware realizations
(see Chapter 7). This same property of being physics-like makes CA a
natural tool for physical modeling[80].

Reversible Cellular Automata (RCA) add the property of micro-
scopic reversibility to the CA paradigm, making possible a still closer
correspondence between physical systems and computer models. As an
illustration, in Section 2.4 we present an RCA analogue of the classical-
mechanical Billiard Ball model of Section 1.3.

The compatibility of computation with CA was first demonstrated
by von Neumann[87]. Toffoli[72], in 1977, showed that RCA (of which
the only known examples up until then were extremely trivial) could
compute, but his models didn't allow Bennett's technique of Section 1.2
to be used to "clean-up" unwanted garbage produced during the com-
putation. The RCA analogue of the BBM that I present here is the
first CA model which incorporates reversibility in a way which makes
computation practicable. All of the results concerning the computing
capabilities of reversible logic developed in the previous chapter can be
carried over into this model. If this model is implemented in reversible
hardware, it can be used to simulate any other 2-dimensional reversible

53

54 Chapter 2. Reversible cellular automata

cellular automaton in a local manner.

2.1 Cellular Automata

In CA, space is a regular lattice of cells, each of which contains one of a
small allowed set of integers. Only cells that are close together interact
in one time-step-the time evolution is given by a rule that looks at the
contents of a few neighboring cells, and decides what should change[87].
At each step, this local rule is applied everywhere simultaneously.

The best-known example of such a digital-world is Conway's[28]
"Game of Life." On a sheet of graph-paper, fill each cell with a 1 or a
0. In each three-by-three neighborhood there is a center cell and eight
adjacent cells. The new state of each cell is determined by counting the
number of adjacent l's: if exactly two adjacent cells contain a 1, the
center is left unchanged; if three are l's, the center becomes a 1; in all
other cases, the center becomes a 0.

Such a rule gives rise to a set of characteristic patterns that move
(reappear in a slightly displaced position after some number of steps),
patterns that are stable (unchanging with time), patterns that oscillate
(pass through some cycle of configurations), and many very complicated
interactions and behaviors. The evolution of a given initial configura-
tion is often very hard to anticipate.

One way to show that a given rule can exhibit complicated behavior
is to show (as has been done for Life[12]) that in the corresponding
world it is possible to have computers. If you start such an automaton
with an appropriate initial state, you will see patterns of digits acting
as signals moving about and interacting with each other to perform
all of the logical operations of a digital computer. Such a computer-
automaton is said to be universal.' Like other universal computers, a
universal cellular automaton can exhibit arbitrarily complex behavior.

We typically show that a CA rule is universal by demonstrating that
it supports patterns of cell states that can simulate a universal set of

'Von Neumann[87] was interested in the problem of evolution: Can life emerge
from simple rules? He exhibited a CA rule that permitted computers, and in which
these computers could reproduce and mutate. In this document, I refer only to the
existence of computers when I use the term universal.

2.2. Approaches to reversibility 55

logic elements, signals, and allows the logic elements to be connected
together. This implies that we can simulate the cicuitry of any com-
puter, and so the rule is a computer when started from the right initial
state. Once the universality of a few CA rules has been established,
other rules may be shown to be universal by demonstrating their ability
to simulate one of these universal rules, as we do for example at the
end of Section 2.4.

Universal CA rules may be particularly important in connection
with fully parallel hardware implementations of CA, since machines
based on appropriate universal rules can be usable as general pur-
pose CA simulators (see Chapter 7). If an n-dimensional universal
CA rule allows can simulate logic elements which can be connected in
n-dimensions, then it can simulate any other CA rule with the same
dimensionality in a local manner: a group of cells is used to implement
a circuit which simulates one cell of the other automaton, and such
groups are interconnected.

In Sections 1.2.1 and 1.2.2 we discussed universal sets of logic
gates-if a set of logic gates isn't universal, then no interconnection of
such gates can be a computer. In particular, a regular structure built
up out of such gates cannot be a computer. Since a CA rule is just
some logical function (which can be regarded as a logic gate), only CA
for which this function is a universal logic element are candidates for
universality. Unfortunately this isn't much of a constraint, since most
logic functions are universal (in fact, as we showed in Section 1.2.5, all
non-trivial conservative logic gates are universal), but it is occasionally
helpful. For example, a rule that can be expressed using only XOR (sum
modulo 2) isn't universal (see Section 1.2.2).

2.2 Approaches to reversibility

Any rule that determines the time evolution of finite-state cells and
that has a periodic structure in space and in time2 defines a cellular
automaton.

2That is, the evolution law commutes with a discrete set of translations in space
and in time.

56 Chapter 2. Reversible cellular automata

Such rules (also called transition functions or local maps) are often
given by an equation of the form

c9 1 = c{91,t (2.1)

where we have made use of the following notation: ct is the complete
configuration of cell values at time t, c{f},t is some portion of this con-
figuration surrounding the cell at position - that constitutes the neigh-
borhood of X, and czt is the state of the cell at position X' at time t. In
fact, all CA rules can be put in this form,3 although this may not be
the simplest or most illuminating way to express the rule.

A typical rule of the form (2.1) gives rise to a non-invertible dy-
namics. For example, the Life rule doesn't produce an invertible time
evolution: if an area now contains only zeros, did it contain zeros one
step ago, or were there perhaps some isolated ones that just changed?
Its impossible to tell.

This typical irreversibility stems from the format of equation (2.1):
it describes an evolution that is built out of functions with more inputs
than outputs. To make the overall, global evolution invertible requires
a very careful conspiracy: in constructing the new state from the old,
the cells that "see" a given cell as a neighbor must, taken together,
retain complete information about its old value. They must take this
coordinated action even though each of these cells sees some neighbors
that none of the others see.

One way to accomplish this is to use a rule f for which most cells
never change, with a large enough neighborhood so that each cell can
examine the pattern formed by many nearby cell values. Cells that find
themselves in the middle of some particular unchanging pattern can be
allowed to cycle through their states without spoiling the reversibility.
Such guarded context rules, in which the pattern that marked the cells
that could change was itself unchanging, were the earliest reversible

3If the rules fl, f2, up to fn are used in succession in a cyclic fashion, this
periodic time dependence can be removed by using the composition of these n rules
as the new rule; a periodic space dependence can be eliminated by regrouping state
variables into new cells of the size of the spatial period; and an nth order time
dependence can be hidden by using new cells that contain all the data from n
consecutive steps.

2.3. Partitioning cellular automata 57

rules discovered[2].
4

A much more productive approach is to abandon the format of
equation (2.1), and write our CA rules in a form that makes their in-
vertibility manifest, or at least much more readily apparent. There are
two techniques known that allow us to do this: the partitioning tech-
nique, which is based on transition rules that are expressed in terms of
reversible logic gates; and" the second order technique, which is closely
related to reversible second-order finite difference schemes. In this chap-
ter we will show that both of these techniques allow us to construct
RCA that are universal5 , thus demonstrating that RCA are capable of
arbitrarily complex behavior-we will discuss a variety of RCA models
of physics in Chapter 4.

2.3 Partitioning cellular automata

Consider a space of cells of some particular size-we'll think of a space
consisting of k 2-state cells for definiteness (with periodic boundary
conditions, to avoid having to worry about providing a special rule
at the boundary).6 At each step of operation, all k bits are used to
construct a new k-bit configuration. The net result of the local CA
rule acting simultaneously everywhere is to perform some k-input, k-
output function that transforms a given configuration into its successor
configuration.

4We can invent non-trivial guarded context rules by using this technique to
simulate other kinds of reversible rules we will discuss: cells playing different roles
can be suitably marked with unchanging patterns.

5A universal RCA is able to simulate any computer (given enough time and
space) and in a similar manner to irreversible CA, some can simulate any other
RCA rule of the same dimensionality in a local manner. Of course no RCA rule can
simulate an irreversible CA rule of the same dimensionality in a local manner.

'Since we can only build finite systems, we are confronted with the practical
problem of deciding what to do at the boundary of the system. If we choose to
use a different rule at the boundary, this rule must also be invertible if our overall
evolution is to be invertible: the simplest invertible rule to use at the boundary is the
identity rule (values at the boundary remain fixed). Usually we completely avoid
the problem by using periodic boundary conditions: thcn there is no boundary.
Unless otherwise specified, all of our example systems can be assumed to avoid the
problem in this manner.

58 Chapter 2. Reversible cellular automata

- 1 7 11--

Figure 2.1:

Thus we have an overall function with equal numbers of inputs
and outputs-as we noted in Section 1.2.2, such a function can be
invertible, provided that it performs a permutation on the set of input
configurations. But a cellular automaton is defined in terms of a local
rule; how can we ensure that the corresponding global dynamics will be
such a permutation? The most straightforward way to guarantee that
such a function will be invertible is to construct it as a composition of
invertible logic elements. (In fact, all known RCA rules can be written
as such compositions).

We refer to CA rules that are based on logic elements with equal
numbers of inputs and outputs as partitioning cellular automata. The
essential feature of these automata is that at each step of the updating,
the state variables are partitioned into disjoint groups, and each group
is updated as a unit.

As an illustration of the use of the partitioning technique to con-
struct RCA, consider a 2-dimensional space with 2 states per cell.
Figure 2.1 shows a Cartesian lattice of cells, divided into 2x2 blocks
of cells. We treat each 2x2 block as a conservative-logic gate (see Sec-
tion 1.2.4), with 4 inputs (its current state) and 4 outputs (its next
state). These gates are interconnected in an entirely uniform and pre-
dictable manner-in applying the rule to the 2x2 blocks, we alternate

2.4. The BBM cellular automaton 59

between using the solid blocking in this diagram for one step, and then
using the dotted blocking for the next.7

An example of a conservative rule (one that conserves l's and O's)
that is reversible is the following:

[A min(2.2)

Here a 0 is shown as an empty cell () and a 1 as a filled-in cell
(0). In the case of all 0's or all l's, there is no choice, they remain
unchanged.

A 900, 1800, or 2700 rotation of one of the blocks on the left is
mapped onto the corresponding rotation of the result to its right-this
rule is rotationally symmetric, and these are all of the possible cases.

Since each distinct initial state of a block is mapped onto a distinct
final state, this rule is reversible. We will find, in the next section, that
the automaton corresponding to this rule is universal.

2.4 The BBM cellular automaton

When viewed only at integer time-steps, the BBM (see Section 1.3)
consists of a Cartesian lattice of points, each of which has associated
with it a value of either 0 or 1, evolving according to a local rule. It
would therefore seem to be a straightforward matter to find a CA rule

7If f, is the global rule that applies to the solid blocking, and fd to the dotted
blocking, then cg+1 = f,(fd(c)) describes the evolution of a configuration c, using a
time independent rule. By simply regrouping the bits into larger cells, the positional
dependence can similarly be removed from the form of the rule, so that it can be
written in the form (2.1) if desired.

60 Chapter 2. Reversible cellular automata

that duplicates this digital time evolution.8

Unfortunately, the most direct translation of the BBM into a CA
has several problems. First of all, to have separate states of a cell to
represent 4 kinds of balls (4 directions) an empty cell and a mirror, and
to have the balls absolutely conserved (as they are in the original BBM)
would require a standard "change the center cell" rule (equation 2.1)
with 6 states per cell, and a 17 cell neighborhood. Such a rule has a
very large number of possible configurations for its neighborhood, which
makes it unwieldy. Moreover, many of these configurations involve such
events as head-on collisions, which were disallowed in the BBM-a CA
rule, however, should be defined for all configurations. It is not at all
obvious how to extend the BBM rule to these extra cases, and still have
it remain reversible.

At the expense of making collisions cause a slight delay, we can get
away with the very simple rule (2.2) of Section 2.3 which involves only
2 states per cell in a 4 cell neighborhood, is reversible, and conserves
the number of l's (and O's) in all cases.

The [4 F: (and rotations) case in rule 2.2 is the one that

causes an isolated 1 to propagate in a straight line, in one of four
directions (depending on which of the four corners of its starting block
you put it in). See Figure 2.2. The legend "solid" or "dotted" below
each of these automaton configurations tells you whether the grouping
of cells into blocks for the next application of the rule is indicated by
the solid or the dotted lines.

Since ii - fl (and rotations), a square of four ones straddling

the boundary of two adjacent blocks will be stable-we will use such
squares to construct mirrors, as shown in Figure 2.3. The four l's
straddle two dotted blocks horizontally, then two solid blocks vertically,
and then two dotted again.

Since M - FW (and rotations), pairs of travelling ones perform

a billiard-ball type collision, as shown in Figures 2.4a through 2.4f. In
all of these figures, the paths the i's were originally following have been
lightly drawn in, to show that the AND case shown results in an outward

'A version of the material in this section appears in my paper Physics-like models

of computation[45].

2.4. The BBM cellular automaton 61

70 -H 4

L~~~~ +I[iLW

dotted solid dotted

Figure 2.2:

) T"iii-I.-'.. rrr...r'i-)

ny.If. nut:._>l")II - " '- ! I
. - L J -

On -T &*

dotted solid dotted

Figure 2.3:

62 Chapter 2. Reversible cellular automata

-- " 1
t - - -r-- -I

=L - -N L, _rr

"" dotted solid dottedAA /1

- -T

---- L -U
solid dotted solid

Figure 2.4:

2.4. The BBM cellular automaton 63

r I-rF7
4__ t• " No

L- -- L_Ji. L L,.LLJJ-
solid dott cd solid

" ,\i r...!_

L__ _ I
--," I. .. T , --- -... " - -()-

EE M MIN I -NMW
£ nI I .l ... iim imi... ' u: m_ .

... ... i]mS nn umu

L L L_ _
dotted solid dotted

Figure 2.5:

displacement, just as in the BBM. (Unlike the BBM, there is a delay
in such a collision, which we'll have to worry about in synchronizing

signals). -0 (and rotations) permits the reflection of dou-

ble signals such as those used in Figure 2.4 by a mirror, as is shown
in Figure 2.5. The mirror consists of two adjacent stable squares of
the sort we introduced in Figure 2.3 (notice that a square is stable no
matter what you put next to it-it is decoupled from the rest of the
evolution). Again, the signal path has been lightly drawn in. After
each reflection such as that shown above, the signal has been delayed
by a distance of one block along the plane of the mirror (in this picture,
the signal winds up one block-column behind where it would have been

64 Chapter 2. Reversible cellular automata

r"T-: E lU n EU 2-delay 3-delay\ -r -]
1_ -i _ i!\;'E

" , ,_,- - - -i '- ' i," I

Figure 2.6:

had it not hit the mirror).
In the BBM, such a reflection would cause no horizontal delay. We

can compensate for such extra delays, as well as add any desired hori-
zontal delay of 2 or more blocks, by using mirrors to adjust the timing
of signals (Figure 2.6). Suppose we want to arrange for t.wo signals to
collide, with the plane of the collision being horizontal. If we get the
two signals aligned vertically and they are approaching each other as
they move forward, they will collide properly. We may have to adjust
the time it takes one or both signals to reach a given vertical column
by using delays such as those in Figure 2.6.1

In order to allow signal-paths to cross without interacting, we use
signal timing. By leaving a gap long enough for one signal (2 blocks)
between all signals, we need only delay one of the paths by 2 blocks
along the plane of the collision we're avoiding, in order to allow the
signals to pass each other harmlessly. This gap is also enough to allow us
to separate parallel output paths from a collision (Figure 2.7). After the
collision (Figure 2.4) the upper path already has a 1-block horizontal
delay relative to the lower path. The mirror introduces a further 1-
block delay, and so the upper signal passes through the timing-gap left

9We can tell how many steps a signal will take to traverse a given path (from
one position where the signal is moving freely to another) by simply drawing the
path joining the two points (including all points that may be visited by at least one
1) and counting how many cells are on the path.

2.4. The BBM cellular automaton 65

Figure 2.7:

! !\

,7- - -

igure 2.8: BBMCA implementation of a Fredkin gate, with outputs fed

back to inputs via signal paths with co-prime lengths, to perform a pseudo-
random permutation.

in the lower signal path.
With the addition of some extra synchronization and crossover

delays, any BBM circuit can now be translated into a BBMCA cir-

cuit. Since the BBM has been shown to be a universal computer, the
BBMCA is also.

Figure 2.8 is taken from the screen of CAM-6, the hardware cellu-
lar automata machine (CAM) that was designed by Tom Toffoli and
myself (see Chapter 7). t- shows. a IDIC , r, a ,, z., io, of t e ir ui
of Figure 1.8 (a Fredkin gate built out of six interaction gates) with

a

66 Chapter 2. Reversible cellular automata

outputs fed back to inputs via paths that have co-prime lengths. This
circuit generates a very long permutation cycle, and so acts as a pseudo
random-number generator. Note that the l's and O's of the conservative
logic circuit being simulated correspond to pairs of l's (which simulate
billiard balls) in the BBMCA, and several steps of the BBMCA evo-
lution correspond to one step of operation of the Fredkin gate being
simulated; a pseudo random sequence can be read off by looking at any
cell on one of the feedback paths at regular time intervals.

There are many rules similar to the BBMCA that are also
universal-for example, if we take the BBMCA rule of fig.2.4 and mod-
ify it so that for each case shown, the result (right hand side) is rotated
clockwise on the dotted steps, and counterclockwise on the solid steps
(ie. on dotted steps, and on solid steps,

etc.) then we get another rule that is also computation universal. Its
universality can be shown in a direct manner by using this rule to
simulate the BBMCA (this rule can simulate a given BBMCA compu-
tation isomorphically using eight times as much space, and four times
as much time).1 ° The possibility of such a simulation depends crucially
on a scale-invariance property of this and related models, which we will
discuss in the next chapter.

2.5 Running backwards

The BBMCA is a reversible system-what is the inverse rule? From
table (2.2) it is apparent that if the BBMCA rule is applied consecu-
tively to the same blocking twice, the second application will undo the
first, and the net result will be the identity transformation. In general,
to undo an entire reversible evolution, we first undo the last step, then
the step before that, etc. For the BBMCA, once we have undone astep
by reusing the dotted blocking, we have arrived at a configuration that
was the resuh of an updating on the solid blocking. By performing a
step on this blocking, we undo another step. Thus to run backwards,
we run the evolution exactly as we did to go forwards; only we start by

1°The idea for this BBMCA variation arose out of a discussion with Tommaso
Toffoli.

2.5. Running backwards 67

I,

Figure 2.9: Magic-gas experiment: (a) A gas; (b) something happening; and
(c) order out of disorder.

running a step on the opposite blocking to the one that we would use
to continue running forwards.

What is going on may be more obvious if we consider a single 1, as in
Figure 2.2. The direction of travel of the 1 in Figure 2.2a depends upon
whether we begin with a step using the dotted blocking, or the solid
blocking: it will travel in one of two opposite directions. By starting to
run with the wrong blocking, we reverse the motion of all "particles,"
and the system runs backwards.

In Figure 2.9, we show three stages in the evolution of a BBMCA
"gas" in a box constructed of mirror-blocks. Initially (Figure 2.9a) we
have a random-seeming gas of particles. For a truly random distribu-
tion of l's and O's we would expect a very dull evolution, since it is a
maximum entropy state, and this is a reversible rule (see Section 2.8.1).
As we run this experiment on CAM-6, we see the system begin to sim-
plify (Figure 2.9b), and finally turn into a circuit with a "ball" bouncing
around outside the box. What we have of course done is started with
a fragile circuit inside the box (see Section 3.1) which uses dynamic
mirrors which can be destroyed by a mis-timed collision (Figure 2.9c)
and introduced a particle through a small hole in the box. This particle
randomized the circuit, turning it into a gas of particles; we stopped the
... e , r .ve rs all the velocities, and saved the confi..r tion-this is
the configuration of Figure 2.9a. This makes an amusing demonstration

68 Chapter 2. Reversible cellular automata

0 0- -0 0-- 0 0- 0

Figure 2.10: Remapping of a BBMCA block.

of the exactness with which we can reverse the motion of particles in
an RCA evolution to produce atypical random-looking gases; in Chap-
ter 4, we will discuss more serious uses of RCA gases based on rules
closely related to the BBMCA rule.

2.6 Relationship of BBMCA to Conser-
vative Logic

The interaction gate of Figure 1.5 (a schematic representation of a BBM
collision) has two inputs and four outputs. If we wish to consider it to
be a conservative-logic gate (one that conserves both O's and l's) then
we must regard it as a gate with four inputs and four outputs, two of
the inputs being constrained to always be O's.

The gate upon which the BBMCA is based also has four inputs
and four outputs. Is there some connection here? Let us redraw ,he
BBMCA rule in a different form:

a -A
Mb AB becomes B- B

cd~ DC - -

Here the mapping of input variables onto output variables of the
BBMCA rule has been redrawn as if the inputs all arrive and leave in a
vertical column. If we use this correspondence to draw the four possible
cases with a = d = 0, drawing 0 for 0, for 1, and showing each
input/output case, we get the mapping of Figure 2.10, which is logically
the sane as the interaction gatee. hus rule) the BBMCA rule,
can be regarded as a completion of the definition of the interaction gate

2.7. Second-order cellular automata 69

for cases that don't correspond to the constraints of a BBM collision."

2.7 Second-order cellular automata

In the preceding sections we have discussed CA that are based on logic
gates with equal numbers of inputs and outputs. Properties such as
reversibility and conservation of l's and O's that were given to the
gates were inherited by the global evolution; however, such partitioning
schemes can equally well give rise to an irreversible evolution if we base
them on an irreversible gate (we give an interesting irreversible example
in Section 4.4).

It turns out to be very easy to find a class of CA laws that are always
invertible, simply by virtue of the form of their defining equation.

Consider first the following finite difference equation, with ut a real
variable:

ut+1 = f(ut) - Ut- 1 (2.3)

If you want to compute ut+1, you must know ut and ut.-i-these two
constitute the complete state of the system. For what functions f will
the time evolution be invertible?

ut_1 = f(ut) - Ut+1 (2.4)

Therefore any f at all will do!12 Knowing u for two consecutive times
allows you to calculate any preceding or any succeeding value of u (To
my knowledge Fredkin[24] was the first to study reversibility in finite-
difference equations of this sort).

The generalization to CA is straightforward-let u in (2.3) be re-
placed by cz, the contents of the cell at position F in our automaton:

= f(cIZIt) - Cei..1 (2.5)
11Recall that we completed the interaction gate definition in a different way in

Figure 1.9, and we couldn't complete it at all in terms of the behavior of billiard
balls. This suggests an advantage of using incompletely specified (constrained) logic
elements: circuits designed in terms of such elements will work regardless of how
(or even if) the unused cases are defined. This gives a lot of freedom to whoever
has to find a physical (or even a logical) implementation.

12Assuming integer addition and subtraction is done without error, if such an
equation is iterated on a digital computer, its time evolution remains exactly re-
versible, despite roundoff and truncation irrors in computing f.

70 Chapter 2. Reversible cellular automata

-"" -... -::

Figure 2.11: State after several thousand steps of a reversible second-order
evolution that started from a block of l's in the center.

where f(c{),t) is any function involving the contents of cells near po-
sition -, at time t, and the difference is taken modulo the number of
allowed cell values."3 If we let the state of a cell correspond to its con-
tents in two successive steps, then (2.5) can be reexpressed in the form
(2.1), but its reversibility is not manifest.

To give an example using a two dimensional Cartesian lattice with
one bit of state in each cell, let the neighborhood c{j},t consist of the
cell at position E and its four nearest neighbors:

(0 if all 5 neighbors are zeros, (2.6)
= 1 1 otherwise

Figure 2.11 shows the state of a 256x256 periodic space after several
thousand steps of dynamical evolution: it started from a configuration
that was all O's exc, . for a 16x16 region in the center that was all I's
in both the past and the present. The block is still visible, because of
a conservation property of this rule (such conservations are discussed
in Section 3.2.1). It was curiosity about the long-time behavior of

'nDifferences mod-k and logical functions can always be re-expressed as ordinary
polynomial functions. For example, if A and B are binary variables, then (A - B)2

is the same as A + B (mod2), 1 - A is the same as NOT(A), A x B is the same as
AND(A, B), etc. Thus (2.5) is equivalent to an ordinary real-variable finite difference
equation with integer initial conditions.

2.7. Second-order cellular automata 71

this particular rule that started Tommaso Toffoli and I on the road to
building cellular automata machines.

How do we run our second-order systems backwards? Since the
form of the inverse equation to (2.5) is the same as that of the direct
equation:

ct-= f f z,) - czt+l (2.7)

the evolution governed by such an equation can be inverted by simply
exchanging the information corresponding to the two configurations
that make up the state, and continuing to use equation (2.5) to govern
the evolution. If you think of the two consecutive configurations that
make up the state of the system as being like two consecutive snap-
shots of some physical system, then it is quite intuitively satisfying
that we make the system run backwards by exchanging the snapshot
corresponding to the past with the one corresponding to the present:
this time reversal operation is quite analogous to reversal of all particle
momenta.

Many second order reversible rules of the form (2.5) can be recast in
a sort of Hamiltonian form. A conserved "energy" function is derived,
and the evolution rule becomes: make all changes in the configuration
that leave the energy unchanged. This is discussed in Section 3.3.

Second-order reversible rules can also be constructed using opera-
tions other than subtraction in an equation such as (2.5). You can even
let the decision of which operation to use depend on the neighbors at
time t. In the most general second-order reversible rule, the neighbor-
hood at time t is used to select a permutation on the set of allowed cell
values. The cell applies this permutation to its state at time t - 1 to
construct its next state.

2.7.1 Second-order, reversible, universal au-
tomata

Here we will give two examples to demonstrate the ability of our second-
order scheme to support universal computation. I constructed the RCA
model that will be described first long before the BBMCA, but it is
mrch ls elegant. Tt is also based on the interaction gate (Fire 1.5),
but this time the interaction is attractive (this is logically still repre-

72 Chapter 2. Reversible cellular automata

sented by the same gate). This rule will be incompletely specified: we
will only specify the cases that are needed to demonstrate its univer-
sality.

As a second example, we will present a second-order rule that can
very directly simulate the BBMCA, and so demonstrates the ability of
second-order RCA to be universal in a rather simple fashion.

A 3-state rule

For our first example, we begin with a 2-dimensional Cartesian lattice,
this time with 3 states per cell, which we can designate as -1, 0, +1,
and which we will draw as '\', blank, and 'P respectively in diagrams.

The time evolution will be given by equation (2.5), with the neigh-
borhood c{r},t chosen to be the nine cells in the 3x3 region of the
configuration centered on ct, and '-' is taken modulo 3.

For each possible configuration of the neighborhood, f will return
a value of -1, 0, or +1. Just as head-on collisions never arise in BBM
computations, many configurations of this RCA need not arise in order
to build a universal computer. We will leave these cases undefined-
each choice for these cases defines a distinct universal RCA.

An isolated 'P or '\' will correspond to a travelling billiard ball-
if only the cases defined here arise, the number of such balls will be
conserved. An isolated 'P will propagate along a positively sloped
diagonal-its evolution will be governed by the following cases:

000 000 /00 000 0/0 000 000 000
000 0/0 000 000 000 /00 00/ 000
000 000 000 00/ 000 000 000 0/0

all return a 0 as the value for f;

00/ 000
000 000
000 /00

both yield a value of '' (ie. +1). A sample time evolution (using
halftones to show a cell's contents at time t - 1 and solid lines for time
t. with diagonals lightly drawn through all cells) is given in Figure 2.12.
Intuitively, this rule at time t tries to make the '/' travel both forwards

2.7. Second-order cellular automata 73

~~X. ~ " NS**.''~
. \ ..

Figure 2.12:

and backwards along its diagonal-subtracting away a '/' where it was
at time t - 1 just leaves a '/' in the forwards direction.

We will define this rule to be rotationally symmetric. It will be
helpful to adopt the following convention: the 900 clockwise rotation of

000 \oo
000 000
/00 / is 000

Inversions are defined analogously. Thus an isolated \' will follow a
negatively sloped diagonal path if the propagation of signals is governed
by the cases:

000 000 /00 0/0 000
000 0/0 000 000 000
000 000 000 000 0, /00

(and rotations and inversions). For compactness in writing the com-
plete rule, we adopt the convention that inversions as well as rotationsof the cases given are mapped onto the corresponding inversions or

rotations of the result given.
These cases become zero:

\\\ \\0 \\O \\0 \\0 V \ \0\ \o\ \0\
000 000 /00 /00 //o 000 /0/ 000 /00 /00

/ 1/0 000 00/ 00/ /A A\ /0/ 000 00/

74 Chapter 2. Reversible cellular automata

Y.M

Figure 2.13:

\00 \00 \oo \oo \00 \o0 \00 \oo \0o \00
000 /\O / /o\ /O\ /00 /00 /00 /of- /00
/00 000 000 000 00/ \oo \o/ 000 00/ 0/0

\00 \00 \00 \00 \00 \oo \o/ \o/ \o/ o\\
/00 /0/ /0/ /\ I/o //0 000 /O\ /o\ 000
0// 000 00/ 000 000 00/ /0\ \o/ 000 000

o\\ o\o 0\0 0\0 o\o oo\ oo\ 0O\ oo\ oo\
000 000 000 000 /0/ 0\0 00\ 000 000 00/
0// 000 00/ 0/0 0\0 000 00/ 000 00/ 000

000 000 000 \\ /\\ /O\
o\o 000 /O\ 000 /0/ 000
000 000 \O/ \// \\/ \o/

These cases become one:

\00 \oo \00 \0o \o/ \o/ \O/ \/\ 0\o o/
\o /00 /00 /00 /o\ /00 /00 /00 /\o \00
\Io \o /00 /0/ 00/ 000 00/ 000 \Io /00

ON/ O\/ oo\ 000 000 000 000 000 000
oo\ 000 /\o 000 000 /\ I\o /\o /\/
000 /00 \Io /00 /0/ \II \Io \// \Io

(plus rotations and inversions). There are 2617 undefined cases.
Using this rule, a mirror looks like the configuration given in Fig-

ure 2.13.14 We needed to define certain cases just to allow a mirror to

"T.hese figures were take r-o the c of a Lisp Machine , ,ibc was used to
simulate this rule to verify that it works.

2.7. Second-order cellular automata 75

...XN

...

Figure 2.14:

remain unchanged when no signals are nearby. A signal bouncing on
a mirror is shown in Figure 2.14. (Notice that there is no horizontal
delay, as there was in the BBMCA). If this signal had been shifted one
column to the right, it would have passed the mirror unaffected.

In Figure 2.15 we have put some mirrors near a place where sig-
nals might collide, so that (with its small neighborhood) this rule can
simulate an attractive collision-the signal paths will be displaced in-
ward in a collision, rather than outward as in the BBM. (If a signal
arrives on just one path, it goes through without any displacement).
Two such gates, back to back, can be used to make signals cross over
without affecting each other (Figure 2.16a and b). Since all collisions
occur without any delay along the plane of the collision, considerations
of synchronization are very similar to those in the BBM. The proof of
this automaton's universality is essentially the same as for the BBM.

An embedding of the BBMCA

To give a simpler derivation of a universal second-order RCA, we can
begin with the BBMCA rule. If f, is the global rule that applies to
the solid blocking and changes an entire configuration into the next
configuration, and similarly fd applies to the dotted blocking, then we
can describe the BBMCA evolution by

c+1 + c = f(CO (2.8)

where ct+1 +-ct_ is taken to be the configuration obtained by performing
the cell-by-cell sum (modulo 2) of the configurations ct+1 and ct_ 1 , and
f(ct) = f.(ct) + fd(ct) is also tCh a sum.

76 Chapter 2, Reversible cellular automata

. y .A.

...., .. , ..,N..".

..~
n~ %~.

.......
.

. .

P':,: ..' , Ao 4,, , >. '

K. A

>lr'V* K.>

V 9 N.
X. M.

(\/.%N;.VN

K~~ ~ XtsK§ y . ~&f

Figure 2.15:

2.7. Second-order cellular automata 77

'. '.' \ ~* r~~ (N ,c >ryC~ . "'N r Ax'A .N~N 't' r c'es\
lox.s . . *~' (' ~ $,

N . b *. > '~~\ S/~X

9%~~0 X, . A
. . . .-.. ~ ~

<% t,

A.NA.SA

Single one case rwo ones case

Figure 2.16:

78 Chapter 2. Reversible cellular automata

In other words, if we add the forward evolution to the backwards
evolution, we get a second order evolution which is no longer time
dependent, since we've used both partitions. Each cell is at the inter-
section of two blocks-one from the dotted blocking, and one from the
solid blocking. By using all seven of the values in the two blocks, we
can determine what the new value of the cell at the intersection would
be if it was updated as part of either block, and thence the sum mod-
ulo 2 of these two values which is the value that should be returned
by f. Thus equation (2.8) can be rewritten in the form (2.5) with a
3 x 3 neighborhood and a dependence on the parity of the center cell's
position that is needed for the rule to know which seven of the nine
cells in the neighborhood to look at. This final rather trivial spatial
dependence can be eliminated, if we want to use this as a proof of the
universal computing ability of rules of the form (2.5), by adding one bit
to the state of every cell, and starting the system out with the values
of these added bits reflecting the parity of each cell's position.

We can use this new rule to run any configuration exactly as the
BBMCA would: we specify one configuration arbitrarily, and then run
one step of the BBMCA evolution on this configuration to get the sec-
ond configuration needed by our second-order rule. Our second-order
evolution will now generate exactly the same sequence of configurations
that the BBMCA system would. We mustn't forget, however, that
we are only using a carefully constrained subset of the possible initial
states of our second-order system. Figure 2.17 shows two frames from
the evolution of such a system which was simulating a BBMCA evo-
lution (a gas which, for the BBMCA, would have been in a maximum
entropy state) when we changed a single bit in one of the configura-
tions. This resulted in there being a place where there was a particle in
the present, but no particle it could have come from in the past. The
first frame shows the situation shortly after the bit was changed; the
second frame shows the situation a few hundred steps later. We call
this simulation, "The end of the world."

2.8. Consequences of reversibility 79

.~

Figure 2.17: Second-order simulation of BBMCA, with an anomaly.

2.8 Consequences of reversibility

Reversibility is a very deep and subtle property for a dynamical sys-
tem to have-it has many consequences. In Section 1.5, we discussed
the way that reversibility imposes a constraint which is analogous to
the second law of themodynamics. In Section 2.8.2 we will discuss the
striking coincidences that must occur when an RCA is reversible. In
Chapter 3 we will discuss conservation laws in RCA, which'in some
sense are an expected consequence of reversibility (after all, RCA must
always retain enough information to reconstruct their initial state). In
Section 5.1, we will see a particularly striking consequence of reversibil-
ity: the macroscopic arrow of time that is relevant to the evolution of
processes within a finite RCA may initially agree with the order in
which the updating produces new configurations, and then later point
in the opposite direction! This is closely related to the discussion of the
next section.

2.8.1 Entropy in RCA

If we fill the cells of our automaton with randomly chosen binary values
and then evolve it according to the Life rule, we see a complex ebb and
flow of structures and activity, with so-called gliders arising here and
there, moving across clumps of zeros, and then being drawn back into
a complex boiling soup of activity, or perhaps rekindling complicated

80 Chapter 2. Reversible cellular automata

interactions in an area which had settled down into uncoupled, short
period oscillating structures.

If, instead of the Life rule, we follow some invertible time evolution,
we invariably find that, at each step, the state of the automaton looks
just as random as when we started.1 5

This is expected from a simple counting argument: Any given num-
ber of steps of evolution oi an RCA rule performs a permutation on the
set of configuration states-each distinct initial state is mapped onto
a distinct final state. S:nce most of the possible states look "random,"
a typical random-looking state must be mapped by this evolution onto
another random-looking state-there just aren't enough simple-looking
states to go around.

This is not meant to imply that RCA are less interesting than ir-
reversible CA. Starting an RCA from a random state is like starting a
thermodynamic system in a maximum entropy state--its not allowed
to get any simpler since its randomness can't decrease, and it can't
get more complicated, since its already as random as it can be, and so
nothing much happens.

If we start an RCA from a very non-random state (eg. some small
pattern on a background of zeros, as ,,:e did in Figure 2.11) then we can
have an interesting time evolution. If we choose a rule and an initial
state that allow information to propagate, then what tends to happen is
that the state of the RCA becomes more and more complicated. More
precisely, if each state of the automaton is viewed as a "message,"
with the contents of the cells being the characters of the message, and
if only local measures of correlation are applied, then the amount of
information 16 in successive messages tends to increase. For example, if
we let ni be the fraction of all cells that are in state i, then the quantity

s = -n k,g2(ni) (2.9)

is the average information content of a celi, 17 using the most local
measure of correlation (none), and for almost any RCA rule and almost

15Spatial correlations will not arise if they -.re initially absent, but time corre-
lations are often very evident, and are characteristic of the particular rule being
employed-conservations are often particulai., apparent (see Section 3.2.1).

16For a discussion of the informati, content of -. m.ssage, cf.[67
17The limit as N -+ oo of the log 2 of the number of configurations in an N-cell

2.8. Consequences of reversibility 81

any initial condition is found empirically to eventually increase to a
maximum value which persists indefinitely.18 This suggests that most
RCA rules, within the constraints of the invariant quantities that they
preserve (see Chapter 3), perform a sufficiently complicated and non-
linear transformation on neighborhoods that a coarse-grained entropy
such as this19 tends towards a maximum equilibrium value, at least for
systems which don't cycle first.

Of course the automaton is really only repeatedly encrypting its
state, and so if all correlations are taken into account the amount of
information really never changes. What happens is that the automaton
will introduce some redundancy into the message, and use more cells to
encode the same information. Information that was initially localized
becomes spread out as correlations between the states of many cells,
and it becomes very difficult for a locally invertible evolution to put
the redundant pieces back together. 20 To use an analogy, an invertible
mapping could change two copies of this chapter into one copy, and
several sheets of blank paper. Two separate invertible mappings, each
acting only on one of the copies, could not accomplish this end.

A less direct argument that points to increasing complexity is just
a variant on our earlier counting argument: For an RCA to complete
a cycle, it must "find" its initial state-it can't repeat any other state
before repeating that state, since each state has a unique predecessor.
Since there is generally nothing driving an RCA towards its initial state,
RCA tend to have very long dynamical orbits (think of the recurrence
time for a BBMCA "gas" of particles, started with most particles in

space that are compatible with this set of ni's, divided by N.
18A less local measure would be, for example, to let the pi's in equation (2.9)

be the frequencies of all possible 2x2 blocks (e.g., there are 16 different kinds for
binary-valued cells). This would certainly be a more interesting quantity than the
most local measure for rules based on conservative logic (i.e., binary valued cells,
and rules that conserve the total numbers of l's and O's).

19A coarse-grained entropy that is more like that of classical statistical mechanics
would involve smearing some of the fine details of configurations. For example, we
could divide our system into kxk blocks, and lump together microstates that can
be transformed into one another by permutations of sites within these blocks.

2°Equation (2.5) generates a locally invertible time evolution. If we know the
values of cells near position i at two successive times, we can tell what the preceding
value of the center cell was.

82 Chapter 2. Reversible cellular automata

a clump). But since there are relatively few states that have a simple
structure, a long orbit implies that the system must eventually make
use of more complicated states.

We have already discussed in Section 1.5.4 a rather general class
of reversible logical systems in which an interaction characterized by
a probability distribution can be analyzed in thermodynamical terms.
The fact that isolated subsystems in an RCA tend towards maximally-
disordered states which then persist for a very long time should make it
possible to use similar thermodynamic reasoning to put constraints on
what processes operating within an RCA between two such equilibrium
subsystems can do.

2.8.2 The charming circle

In this section, I will present a consequence of reversibility which is
present in RCA, but is more striking when presented in terms of a
reversible finite-difference scheme. The model I will use has been stud-
ied by Fredkin, and the invariant associated with it was discovered by
Feynman. This dynamical system was actually first discovered by Mar-
vin Minsky by accident, when he made a mistake in a program to draw
a circle (we will not follow his original derivation).

A simple equation to generate points on a circle would be

zt = Xt + iyt = ZOe iWt

For t = 0, 1, 2, etc., this would generate points (xt, yt) at angular
separations w around a circle of radius Izol. Points can of course be
generated by multiplication of earlier points:

zj+= elwzt (2.10)

or (going backwards)
zt-1 e-iWzt

Taking the difference of these two equations gives us a second order
zq,=at i z2

ztl- zj... 1 = 'Nisin(w) zt (2.11)

2.8. Consequences of reversibility 83

We can transform this into an equation that has only real coefficients
by letting st = itzt, so that

sj+j + s-1 = -2sin(w) st (2.12)

Note that we have not made any approximations-this equation is ex-
act. It can be read as two equations, one relating the real parts of the
s's, and one the imaginary parts. If we consider only the real parts of
the s's, then

Re[stl = Re[it zt] = Re[i t(xt + iyt)I

Thus the real part of st for t = 0, 1, 2, etc., is xo, -yl, -X 2, y3, x4,
-ys, etc.; and so equation (2.12), iterated as a real equation, generates
consecutive x and y values (with signs sometimes reversed) for points
on a circle. If consecutive pairs of points are plotted, for w small we
get a rather good circle (plotting consecutive points like this actually
generates an ellipse, but for small w the eccentricity is very small).2

If we want to, we can multiply consecutive st's by -1 before plotting
them whenever t = 1 or 2 modulo 4, to correct the signs of the x's and
y's, so that points come out in order as we go around the circle.

Now equation (2.12) is of the form (2.3), and so it generates an
invertible dynamics. Furthermore, since each point plotted involves two
consecutive values of st, each point specifies the complete state of the
system. Thus the x versus y space is the state space for this dynamics,
and the dynamical orbits of this system consist of points that all lie
approximately along circles, for small w.

If equation (2.12) is iterated on a digital computer using integer
arithmetic, where the product -2 sin(w) st is truncated and rounded
off, this equation remains invertible, since the truncaion and round-
ing off will give exactly the same integers when we are going backwards

21This evolution has a conserved quantity, which can be derived directly from

equation (2.12). Note that

st(-2sin(w) st-..) = sgi(-2sin(w) st)

and so, using equation (2.12), we have st(st +st-2) = st-(st+j +st-). From this,
with some rearranging, we see that s2 - st-ls,+i is conserved. If we are at a time
s Hcp when st = :Lxt, Chen this conserved quantity equals x2 + yg-lyt+j, which for
small w is essentially the radius (squared) of the circle.

84 Chapter 2. Reversible cellular automata

that it did going forwards. Although this discrete evolution is no longer
exactly equivalent to the complex exponential we started with, empir-
ically we find that the evolution is still stable, and gives an orbit that
approximates a circle.

One is struck by a certain rather strange property of this evolution,
which seems less troubling in more abstract contexts. As the pixels
light up on our display screen, moving around this circle over and over
again, we see a band of a certain thickness develop, until finally the
iterated evolution lands on the initial point. Since each point on the
screen corresponds to a complete state of our reversible system, the
evolution cannot land on any other point twice before it repeats the
initial point. Until this happens, when drawing points that are far from
our starting point, this evolution tiptoes around points it has already
hit, just happening to miss them all. The power of the reversibility
constraint to make such an odd series of coincidences happen is rather
remarkable to witness.

It is interesting to note that a very similar derivation to the one
given above for the Charming Circle leads to a finite-difference version
of the Schrdinger equation. In equation (2.10), replace w by Hr, the
Hamiltonian operator times our unit of time 'r. Then this equation
becomes

zt+l = eiH Zt (2.13)

In the whole discussion following equation (2.10), we can treat zt as the
wave function.22 As r" -- 0, the exact finite-difference equation which
corresponds to equation (2.11)

zt+1 - zt- 1 = 2i sin(Hr) zt

turns into the Schr~dinger equation, and so the simpler equation in
terms of the s's (which has only half as many degrees of freedom, if H
is real) can also be considered an exact finite difference version of the
Schrdinger equation.

22Even the derivation of the invariant goes through-this ends up being essentially
the amplitude of the wave function. This invariant can be used to define an inner
product which can take the place of the normal inner product in calculations based
on the s's.

Chapter 3

Conservation Laws in RCA

In general, an RCA has as many conserved quantities as there are
cells-it remembers the initial state of each cell, since you can recover
this information by running the system backwards. Thus it is perhaps
not surprising that these systems often have invariants which can be
computed in a local manner from the current state of the system.

In this chapter, I begin with a survey of invariances in the parti-
tioning rules which are most closely related to the BBMCA. Since this
partitioning scheme was invented specifically for the BBMCA, these
invariances have not been studied before. This survey will indicate the
variety of invariances a small class of reversible rules can have.

I then turn to a number of invariants in second-order RCA. The
only previously reported invariants in these RCA were due to myself [45]
and Yves Pomeau[59]. I present a number of new invariants which are
generalizations of Pomeau's invariants, and show that some of these
invariants can be used as generators of the dynamics.

3.1 Invariants in Partitioning RCA

After stressing how reversibility implies conservation, we should of
c,.ourse b-.;.. an in • i ... e.:. ave conservation wiihout
reversibility, just to demonstrate that reversibility may be a sufficient

85

86 Chapter 3. Conservation Laws in RCA

condition for conservation, but it isn't a necessary one.

This rule isn't rotationally invariant-we've shown all the cases explic-
itly. Since each case preserves the number of l's, this rule is conserva-
tive. Since it doesn't always map a distinct initial state of a block onto
a distinct final state, this rule isn't reversible. As the corresponding
automaton evolved, it would forget all sorts of details about the initial
state, but it would always remember the numbers of l's and 0's. Thus
the existence of an interesting local conservation law does not depend
on the rule being reversible.

We've already seen the BBMCA, which is a reversible rule which
conserves l's and 0's.' In this section we'll discuss reversible rules
which are closely related to this model. We'll consider all rotationally
invariant reversible rules defined on the 2x2 block partition, which
are also invariant under inversions. There are 64 such rules: the only
operations that can be performed on a block that are rotation and
inversion invariant are rotation by 1800, and complementation of all
cells. For example, for a block which initially contains all 0's, we must

have either

or W or

Once we've decided what happens to the all-zeros case, we have no
choice about the all-ones case, since these are the only two cases which

are invariant under 900 rotations. Interestingly enough, if we impose
both conservation of ones and rotational symmetry, then its no longer

1it also has one other conservation that we noted when we discussed this model:
groups of four l's that are placed as mirrors are decoupled from the rest of the
evolution, and are permanent. We will not discuss such decoupled invariants for
te e isere, but we wi mention such situations again ir connection with

second-order rules in Section 3.2.1.

3.1. Invariants in Partitioning RCA 87

possible to write down a non-invertible rule. This is why our irreversible
example in Table 3.1 had to be given in full!

We can assign a number to each of the 64 possible rules by giving
a one-bit answer to each of the questions below for each of the 6 cases
indicated.

M~ EDW
rotate? change? complement?

The middle group could equally well have had the question rotate?
or complement?, since complementation and rotation are the same for
these cases. 2 Each rule therefore corresponds to a 6-bit binary number.
(The rotations are done first, if selected, before complementation).

All of the rules that are multiples of 100 (binary) are conservative
(and vice versa). These 16 rules include the BBMCA, the identity
rule, various gas-dynamics rules (Section 4.2), dynamical spin models
(Section 4.3.1), and rules which simulate elastic strings (Section 4.3.2).
Adding 11 (binary) to the number corresponding to each of the 16
conservative rules gives another set of 16 rules for which the number of
l's in one step is equal to the number of O's in the next step (all rules
with numbers of the form xxxxll).

The 16 rules that are less than 10,000 (binary) have another very
interesting conservation property: they preserve the parity on the un-
used blockings. Recall that when we use our block rules, we alternate
between two partitions; there are two other possible blockings that are
never used. Each block of these unused partitions straddles two blocks
horizontally in one of the active partitions, and two vertically in the
other. If a rule either leaves a block of the active partition unchanged,
or complements that block, then the sums of the parities of the two
cells along any edge are unchanged-therefore blocks that straddle this
active block have the sum modulo 2 of their contents left unchanged.
This is a localized conservation-each unused block has its parity pre-
served for the entire duration of the RCA evolution. In Sections 4.3.1,
4.3.2 and 5.2 we discuss interesting rules that have this conservation.
Note that there are four rules which are both conservative and preserve
the parity on the inactive blocks (one of these is the identity r:i- and

2Each of these cases has only one allowed rotation that changes them.

88 Chapter 3. Conservation Laws in RCA

four complementary to these which are 1/0 conservative, and conserve
the inactive-block parities.

There are 16 rules (all those with numbers of the form 01xx00,
10xx00, 11xx00, and 11xx11) which have a scale invariance property:
we can take any configuration for any of these rules and uniformly
spread out all of the blocks of this configuration by inserting blocks
containing either all O's or all l's (which is needed depends on the
rule-those of the form 11xx00 or 11xxll work with either) between
all blocks of the original configuration. This new configuration will
then have an evolution which, at regular intervals, is just a spread out
version of each step of the original evolution. For example, if we take
any BBMCA configuration and make it twice as high and twice as wide
by adding one block-column and one block-row of zeros between every
block of the original configuration, we get a system that simulates the
original system at one half the speed, using four times the area. This
happens because the new system may be thought of as being composed
of 4x4 blocks: whatever is put in the four corners of these 16-cell
blocks propagates into a 2x2 area at the center, where it follows the
BBMCA rule. The four cells where the interaction takes place may now
be thought of as the corner cells of 4x4 blocks constituting the other
partition. The "fragile" BBMCA circuit that we used in Figure 2.9
was constructed by a scaling transformation: scaled mirrors become
dynamical objects, which can be destroyed if they are hit at the wrong
moment.

Of the conservative rules, there are two rules which conserve lin-
ear momentum: the rule in which whatever is in one corner goes into
the other corner (the non-interacting gas) and the similar gas rule, in
which the head-on collision case causes scattering (_ *), but

otherwise everything goes straight through. This rule is equivalent to
the HPP gas rule[31], which was the precursor to the current interest in
lattice gas dynamics for simulating the Navier Stokes equation. Both of
these rules have the property that momentum is separately conserved
along every 450 diagonal.

Half of the conservative rules (all the multiples of 1000-these are
the rules that are invariant under a 1-00 rotation) conserve the numbcr

of l's that are on the positive diagonals of blocks separately from the

3.1. Invariants in Partitioning RCA 89

number of l's on negative diagonals. This conservation will be the basis
of our analysis in Section 4.3.2 of a rule that simulates elastic strings.

Rule 10 conserves the overall parity of the entire lattice.

In some of these rules, such as rule 10 and those that are conserva-
tive, the invariant is directly a property of the logic gate employed. In
the parity-on-unused-blocking conservation, the conservation is a prop-
erty of the format of the updating. Of these 64 rules (32 if you factor out
an equivalence), about a quarter have provided useful physical models,
some of which will be discussed in Chapter 4.

3.1.1 Energy in the BBMCA

Since the BBMCA is so closely related to the BBM, in which energy is
readily identified, it is tempting to look for an analogy which may be
helpful in directing research towards more physics-like models.

In the BBM, the kinetic energy is proportional to the number of
moving l's. In the BBMCA, if we let Px,,t-1/2 = cx,y,t - c,,y,t-j, then
Et, (p2,y,t-1/2/2) counts the number of moving l's (each moving one
disappears from one cell, and appears in another, so ,yp2 -which
counts how many places change-would count each moving one twice).

The l's that aren't moving are at those places that were a 1 at
t - 1, and still are 1 at time t. Thus the number of stationary l's
is F,4 cx,,,tczz,,t-.. A complicated way of writing the (constant) total
number of l's is

p2
E-1/2= Z t2 + E cjCt_. (3.2)

Xy 2 y

During a ccllision, some of the kinetic-energy changes into potential-
energy, and then it changes back again. 3

Since (3.2) is a constant for any rule for which E,y c,,, is constant,
it is not possible to derive the particular rule from this expression. We
won't pursue the question of using an energy function as the generator
of dynamics here; we will have more to say about it in Section 3.3 in

3One can think of mechanical models of the BBMCA for which the two terms
of (3.2) are proportional to the physical kinetic and potential energy of the system
midway between two steps.

90 Chapter 3. Conservation Laws in RCA

terms of second-order RCA. A connection relating this back to parti-
tioning rules will be discussed in Section 4.3.

3.2 Invariants in 2nd-order RCA

In this section we will discuss two kinds of invariants that have been
found in second-order RCA. The first discussed are localized invariants:
those that you see if you watch the automaton run, even started from
a random initial state, since some areas are remaining fixed or going
through some short-period cycle. These are perhaps the most obvious
invariants. We have already seen an example of such an invariant in
Figure 2.11. The second kind we will discuss are more energy-like-in
fact the first invariant of this sort was discovered in an RCA model
which can be used as a dynamical Ising model, and the invariant is the
Ising energy.4

3.2.1 Localized invariants

In RCA, the simplest locally-computable invariants are of course cells
whose values never change. Such situations can arise because many
rules ignore the remainder of the neighbors when part of the neighbor-
hood has some particular configuration.5 For example, consider any
rule that, in all cases where the center cell of the neighborhood is 1,
ignores the rest of the neighbors and returns a 2. Such a rule, when
used in a second-order evolution (equation 2.5), results in a very simple
conservation law. If we look at the case in one dimension where the
automaton at two consecutive time-steps looks like this:

-1 . 1 . . . A '.' indicates a cell
t . . . 1. . . whose value is irrelevant (3.3)

to the discussion.

4This model, the Q2R model, has been used as the basis of the fastest and largest
Ising simulatiun ever doiie.[34].

'For rules with 2 states per cell, only two rules, "count the parity of the neigh-
borhood" and its complement, have no configuration of part of the neighborhood
that makes the remaining neighbors irrelevant.

3.2. Invariants in 2nd-order RCA 91

Any cell which has a value of 1 in two consecutive configurations will
always be a 1, regardless of what is happening around it.

For a more interesting 1-dimensional example, consider a 2 state per
cell CA with a rule f that returns a I iff each of the two cells adjacent
to the center is the same as the center:

f (c{f)t) = 1 if C.-It = c.,t = cx+l,t (34)
0 otherwise

With this rule, a and b standing for any binary values, and d, b their
binary complements, the second-order time evolution given by (2.5)
says that

t ... bb. A' t+l1 ... a T...(35

which is again of the same form, so these two cells are decoupled from
the rest of the evolution. Any cell which is not initially part of such
a pair will never be (and never was); 6 counting all such cells gives us
an (invariant) estimate of how many cells are available to represent dy-
namically changing information (but only an estimate-whole regions
may be decoupled from the rest of the evolution because they are sur-
rounded by a wall of decoupled cells;7 a local counting wouldn't reveal
this).

3.2.2 Energy-like invariants

In the preceding section, we discussed some examples of invariants
which occur because for certain initial conditions, certain degrees of
freedom are decoupled from the rest of the evolution. If we wish to
develop strong analogies with physics, we would like to find some in-
variants which have more of the flavor of an energy in mechanics-
quantities that are conserved even in dynamical situations.

6In irreversible CA, a guarantee that a cell will always be part of such a pair
does not guarantee that it always has been.7An extreme instance of decoupling of entire regions occurs with any rule that
doesn't depend on the center cell, but depends on its nearest neighbors-this is
discussed in Section 4.3. The system decouples into two entirely independent (but
interleaved) space-time sublattices, each evolving without reference to the other.

92 Chapter 3. Conr irvation Laws in RCA

We have already seen an example of such an invariant, at the end
of Section 2.7.1. In this case, we used a second-order rule to simulate
the BBMCA, and for a certain class of initial conditions, .his rule has
all of the invariants of the BBMCA. Such context sensitive invariants
will not be analyzed further here, except to note that invariants arising
from such embeddings of one rule in the evolution of another are rather
common (see Section 4.3.2, for example). The most extreme case is of
course a computation universal rule which can be used to simulate any
other rule, and hence inherit any set of invariants!'

Our discussion of more energy-like invariants in second-order RCA
will be largely a generalization of an invariant that was discovered by
Yves Pomeau[59] for the Q2R rule of Vichniac and Bennett. We will not
follow his derivation.

We will base our rules on a slight variant of equation (2.5), given by

cl,t+1 = f(c{t},t) + c9,t 1 (3.6)

Note that we have a plus sign between the two terms on the right
hand side. For rules that employ binary valued cells, this change will
not make any difference (since in modulo 2 arithmetic, there is no
distinction between plus and minus).

With reference to equation (3.6), the neighborhood c{g),t consists of
some group of cells arranged symmetrically about the cell at position cg,
and f depends only on the neighborhood count-the sum of the values
of all neighbor cells. In fact, if V{f 1 ,t is the neighborhood count for the
cell at position X, then all of the rules we will initially be considering
will be of the form

f # 0 if Vg),t = k, (3.7)
= 0 otherwise

where k is some integer.
For our first example, we will consider a 1-dimensional CA, with

the neighborhood consisting of the two nearest neighbors to the cell at

'This is a bit like the case of energy conservation in a computer simulation
of celestial mechanics-this conservation is -tntirely a property of the particular
simulation, and not an inherent property of one compt .r.

3.2. Invariants in 2nd-order RCA 93

position X, and k = 0. By virtue of equation (3.6), we know that the
quantity

Czt+1 - Ct-1

will equal zero unless f(c{M},,) 0 0, that is, unless V{g),t = 0. Thus the
product

(ci,,+1 - c,,_.1)V{ Zt (3.8)

is always equal to zero, and so

eZ ,+iV{Z},t = c' ,t-iV{,, (3.9)

(since every term is equal). Letting a be our unit vector along the
lattice, we can write out Ve),t explicitly, and so

cizl v , = : czt-i(z+a,t + CM-,t)

Every term in this sum involves a product of a cell at time t - 1 and
a cell to one side or the other of it at time t. If we think of each such
product term as a bond, we get exactly the same bonds from the sum

c c,Z+a,t_ + cg-a,t-)

and so equation (3.9) becomes

cZ,,+, vc},, = cZ,,v ,_ (3.10)

Thus the quantity EzcztV{),t-1, which is just a sum over all bonds, is
invariant under this particular second-order evolution.

More generally, let n be the number of neighbors in a neighborhood
consisting of some number of pairs of cells, each pair forming the end-
points of a line segment bisected by the center cell (the neighborhood
may also include the center cell); and let the evolution be governed

by any equation of the form (3.7). Now define c't =c9,t - -, and
,! {.} cZ (the sum over the neighborhood of these adjusted cell

values): with this definition, of V', when V{Z},t = k, then V = 0.

94 Chapter 3. Conservation Laws in RCA

Also, when czt+l - ct-I = 0, we will also have c1,,+ 1 - Ct4- = 0. Thus

we again have
E= 46+1 (3.11)

Again we'll consider the second sum in this equation. We will consider
each pair of cells that are arranged symmetrically about the center cell
separately. Each such pair can be re-summed, exactly as we did in the
1-dimensional case, to exchange the roles of t and t - 1, and so again
we find that E cZ,tV{,,,t_j is an invariant.9

This result can be generalized somewhat. First of all, given any
rule with a pairwise symmetric neighborhood-not necessarily a rule
of the type given in equation (3.7)-if we can find a linear function
V of the neighbors which treats symmetrically opposite neighbors in
a symmetric manner, and which is zero whenever f is non-zero (it
may be zero at other times as well) then this function can be used in
equation (3.8) to make it always be zero, and so our whole derivation
goes through again. If instead we find a V which treats symmetrically
opposite neighbors in an antisnymmetric manner, then our derivation-
goes through, except that we get a (-1)t dependence in our invariant.

For example, suppose we have the following function for f:

1 if all neighbors have the same value (3.12)
= 10 otherwise

Then for V we could use the difference of any pair of symmetrically
placed neighbors, and get an invariant with a (-1)t dependence. If the
center cell is included in the neighborhood, we could let V equal the
sum of any two symmetrically placed neighbors, minus twice the center
cell-this would give an invariant that has no t dependence. The sum
of any combination of such invariants, taken with arbitrary weights, is
of course also an invariant.

As a further example, consider a two dimensional second order RCA
governed by the equation (3.6), employing Boolean variables and a
Cartesian lattice. The neighborhood will be the four neaiest neighbors,

9Notice that this argument goes through if we use any multiple of c' instead of
c'-in detailed calculations it may be convenient to use a multiple of d in defining
the invariant, to avoid dealing with fractions.

3.3. Hamiltonian dynamics 95

and f will be a I whenever exactly two of the neighbors are I's, but not
if the two l's are opposite each other. Without this extra condition,
this rule would be of the form (3.7). However, if V is zero whenever the
count is exactly 2, then it is also zero in all cases when f isn't, and so
it generates an invariant. If we call the four neighbors N, S, W, and E
(North, South, etc.) then V = N + S - E - W also treats symmetric
neighbors symmetrically, and is zero in all cases when f isn't-this
second V generates another invariant.

Finally, note that if f is a rule which operates on Boolean valued
cells and is symmetric between l's and O's, and the successive configu-
rations generated by f starting from configurations a0 and a, are called
a2 , a3 , etc., then the configurations generated by the rule f (the rule
that returns a 1 whenever f would return a 0, and vice versa) starting
from a0 and a,, would be a2, a3, a4 , as, a6 , a7, etc. Since the config-
urations are the same up to a complementation of all cell values, any
invariant of f can be transformed into an invariant of f.

In all of our examples, there has been a clear connection between
symmetries of the rule and the invariants we have been able to con-
struct, which is quite analogous to the situation in physics.

3.3 Hamiltonian dynamics

In the Hamiltonian formulation of mechanics, the variables that are
used are those for which the state space of the system evolves like an
incompressible flow.

Since our RCA perform a permutation on their set of allowed states,
any RCA model evolves like an incompressible fluid in the discrete state
space in which each orthogonal dimension corresponds to the allowed
values of one of the cells. If you pick any set of points in this state
space, there are exactly as many states flowing into this set as out of
it.

Thus we are led to try to establish a -amiltonian analogy for RCA
using the cell values as our p's and q's. The discussion of invariants in
second-order systems immediately gives us some example systems for
which we can generate a dynamics in a local manner from an invariant.

Take any Boolean valued RCA of the form (3.7). For example, con-

96 Chapter 3. Conservation Laws in RCA

sider the Q2R rule which prompted Pomeau's discovery of an invariant
in CA: on a 2-dimensional Cartesian lattice, with a neighborhood con-
sisting of the four nearest cells to the center (but not including the
center), f is 1 if exactly 2 of the 4 neighbors are l's, and 0 otherwise.
To derive our invariant, we need to take d = - = c-. Thus ourn 2
Boolean values become ±1 To avoid dealing with fractions, we can
use a multiple of d in defining our invariant, and so we will use ±1.

Our invariant is just the sum over all bonds between cells in two suc-
cessive configurations that are one position displaced from one another.
It becomes clear now why this quantity is conserved:

When we perform the second-order updating, we look at a neigh-
borhood in one configuration (at time t say), and decide whether or
not to flip the center cell in a second configuration (t - 1) in order to
construct the future (t + 1). Although we normally think of the con-
figuration we are constructing as being distinct from the configuration
from time t - 1, we could literally flip the cells in the old configura-
tion whenever the rule returned a 1, and convert it into the new one.
When we've updated all cells, we simply interchange the roles of the
two configurations. We can (if we like) do each complete updating step
by updating cells one at a time, in any order, since the configuration
upon which all decisions are based is not being changed.

Now consider all bonds between the cell we are changing and the
configuration upon which the decision is being based. There are only
four, to the four neighbors. Our rule is that if exactly two of the
neighbors are +1, and two are -1 (remember we're using &') then we
are supposed to make a change, and otherwise not. But this is the same
as saying that we are allowed to change the cell only if it won't change
the count of these four bonds (and hence won't change the total count
of bonds). We're allowed to make a change only if

cz,i- V 1, = 0

both before and after the change to czt-, which happens only when
Vg, = 0.

Thus in this and in all such Boolean valued rules with a single
neighborhood count for which f = 1, the invariant we have derived can
be used to generate the dynamics, using the prescription: Make any

3.3. Hamiltonian dynamics 97

change which doesn't change the "energy,' and applying :i d'%rnately
to the two configurations, using the other to provide the neighborhoods.

This prescription can also be applied to other systems for which
we've found invariants. For example, consider the system which is the
same as the one discussed above (Q2R) with this change: f = 0 if the
two l's are exactly opposite from each other. As we pointed out in
the previous section, this rule still has the Q2R invariant; it also has
a second invariant which, again using N, S, W, and E for the four
neighbors, uses a V of the form 2 = N + S - E - W. This together
with the first invariant (based on V1 = N + S + E + W) completely
characterizes the rule-if both V1 and V2 are zero simultaneously, then
there must be exactly two +1's and two -l's in the neighborhood, and
there must not be two l's opposite from each other.

We can form a single V from these two separate V's as follows:

V= 1+ V 2 =2(N + S) + (E + W)
2 2

Since it turns out that both V and V2 are always powers of 2, multiply-
ing one of them by 3 prevents them from ever cancelling each other-we
can only get zero if both are zero. By considering either factors or range
it is always easy to combine V's in such a manner.1

The invariant generated by this V again completely characterizes
our rule: the evolution is generated by making whatever changes pre-
serve this invariant. In a similar manner, we can construct invariants
which generate the dynamics for a Boolean rule of the form (3.12)
which includes the center cell in the neighborhood, but not for one
that doesn't include the center.

"0 Notice that the form of V is a sum over symmetric pairs of neighbors, with
different weights for each pair, as expected.

98 Chapter 3. Conservation Laws in RCA

Chapter 4

CA models of physics

The use of CA to model physical systems has become a large and rapidly
expanding field of research (see for examjnple [10,17,19,20,26,29,31,34,36,
37,46,53,54,65,80,85,86,93] and references therein). I will not attempt
to survey this field, but will only give background material when it is
necessary for understanding the models or results I am presenting.

I will also not attempt here to duplicate the discussion of physi-
cal modeling already given in [80]; instead I will only present a few
systems that are of particular interest from a modeling or a conceptaal
standpoint, based on the partitioning scheme introduced in Section 2.3.
Some of these systems are also discussed briefly in Chapter 7, in the
course of illustrating the use of various features of a cellular automata
machine.

4.1 Constructing CA models

Ideally, one might seek some set of correspondence rules, whereby one
could start with a physical Hamiltonian and transform it into a CA
rule. This is to some extent the inverse problem of the one discussed in
Section 3.3, where we found rules which have invariants which can be
used to generate the dynamics-further progress in this direction may
lead to useful general techniques.

99

100 Chapter 4. CA models of physics

In the meantime, the most productive technique for constructing
physical models is to build upon known models (such as the lattice gas
models[31,26]) by adding extra states that modify the dynamical inter-
action, or by coupling the dynamics of two well-understood systems,
ea.ch of which uses part of each cell's state. To find completely original
models, it Gften helps to start with the symmetries and conservations
that the macroscopic dynamics is to have, and try to put them into a
simplified microdynamics (i.e., a rule).

The most straightforward application of these techniques is in the
context of partitioning models (see Section 2.3): the state variables are
partitioned into disjoint subsets, each of which is updated as a group;
then the partition is changed.

The partitioning technique is easy to implement (see Section 7.6.2)
and allows a dynamical evolution to be specified in a particularly direct
manner: we give a series of before and after configurations for groups
of state variables. Since all variables involved in each group see exactly
the same neighborhood information, its easy to get them to act in a
coordinated fashion. Properties of the local dynamics, such as invari-
ances and symmetries, are inherited by the global dynamics in a rather
straightforward manner, as we have discussed in Section 3.1.

Note that the input partition and output partition for a given up-
date step need not be identical; such a situation will be termed a shifting
partition. An update step using a shifting partition is equivalent to a
step using an ordinary, fixed partition followed by a step in which state
variables are translated to new positions.

Except where noted below, our examples in this chapter will all
involve an altation bctween two fixd partiio.ns: the two 2,x2 block

partitions used for the BBMCA rule of Section 2.4.

4l.2. Aodels lased on lattice gases 101

4.2 Models based on lattice gases

One of the conservtions that can he put into a)artitioning rule "by
hand" is conservation of tiomentuim. Consider the following rule

IR EI

(where again rolalcd case i-4 corresponding rotation). In all cases,
whatever is in one corner moves to the opposite corner. The global
evolution that is generated by this rule is rather trivial: all l's and
O's travel in straight lines, and never interact at all. If we assign some
momentum to the travelling l's, then this rule cicarly conserves mo-
Inentum, but is rather unexciting. Suppose we now change the third
case, so that the rule becomes

min -4 -711 MR(4.2)

Now if two l's (or two O's) approach each other head-on, the "particles"
come out rotated by 900. This turns our previously non-interacting
gas into an interacting gas, with momentum conserving collisions.
Figure 4.1 shows 3 frames from the evolution of this rule, started from
a uniform 50% density of l's and O's, except for a 16x16 area in the
middle, where the density was 100%.

This rule, along with other gas rules, was discovered as a natural
extension of the techniques developed for the BBMCA model. It turns
out to be equivalent to a lattice gas model (the HPP model) developed
more than a decade ago by Yves Pomeau[31] and coworkers. His origi-
nal model was given as the alternation of two rules on 4-bit cells using
only nearest neighbors which happens to be equivalent to a shifting par-
tition. When we implement it this way on CAM-6 (see Figure 4.2) we
get more sites into a 256x256 area (the size of the display screen), but

102 Chapter 4. CA models of physics

Figure 4.1: Circular wave produced by a localized disturbance.

..........

Figure 4.2: Higher resolution version of the circular wave; only sites contain-
ing 3 or more particles are colored.

4.2. Models based on lattice gases 103

this implementation has the disadvantage that the system shown de-
couples into two independent sublattices, a phenomenon we will discuss
in Section 4.3.

4.2.1 A gas with a finite impact parameter

Although the HPP model depicted above spawned later improved lat-
tice gas models (such as the FHP model based on a triangular lat-
tice) which reproduce the Navier Stokes dynamics in the macroscopic
limit[26], the original model has significant defects. One defect is the
fact that this rule conserves momentum separately on each diagonal;
this makes it behave in some ways more like a 1-dimensional system
than a 2-dimensional system. In Section 7.4 (and in [46]) we describe
an experiment where Toffoli, Vichniac, and I used CAM-6 to measure
velocity/velocity time-autocorrelations at a given site

m 1 T
V(t) = lim 1 E[a!.i(0 t1 C) - a][a!(¢t'C) - a]T-+o TNQ t,=,

where C is an initial configuration, € is the transition rule, a?.(C) has a
value of i or 0 depending on whether or not there is a particle moving
in the q direction at the (ij) site in the configuration C, a is the average
particle occupancy (per site) for each direction, and there is an implied
summation over all N sites and all Q allowed directions. The measured
results for three lattice gas models are given in Figure 7.2. The asymp-
totic slope for the HPP gas is that of a 1-dimensional system[58]; the
expected slope for a 2-dimensional gas is -1, which is clearly exhibited
by the gas labeled TM on the graph.

This TM (Toffoli/Margolus) model can be described in terms of the
rule of Table 4.2: follow the HPP rule, except that at even time steps,
rotate the result for each case 90° clockwise, and at odd times rotate
the results 900 counterclockwise. This rule is almost a simple when
described directly: take the initial state of a block and rotate it 900
counterclockwise on even steps, and clockwise on odd steps, unless it
contains exactly two 1's on a .diagonal, in which case the block is left
unchanged mi F

EXE

104 Chapter 4. CA models of physics

Figure 4.3: Probability flows in the HPP and TM gases, respectively

This rule causes particles to travel in straight lines vertically and hor-
izontally; particles on adjacent rows or columns can collide, moving
them from two adjacent rows to two adjacent columns, or vice versa.
Thus collisions in this rule have a finite impact parameter, unlike the
HPP collisions. This allows momentum on different rows and columns
to interact, avoiding the spurious conservation seen in the HPP model.
In Figure 4.3 we show the results of a floating point srnulation (con-
ducted by Tom Cloney using a Lisp machine) which shows the average
response of each of these gases to a (probabilistically) very small per-
turbation in density at a single site.

This technique for constructing models with a non-zero impact pa-
rameter may be useful in other lattice gas models.

4.2.2 Reflection and refraction

All of the models mentioned above support the wave equation (in terms
of particle densities). We can therefore modify these models in such a
way as to produce reflection and refraction phenomena in these waves.

By adding an extra bit to each cell's state (which doesn't change
...:,1.. I. '__ - -1. 1 V,'V ad ~. ue
WIWI bit), we can mark areas where we wish to follow a different rule.
If in all blocks in which any cell is so marked we follow the identity

4.3. Matched pairs 105

rule (nothing changes) then such marked areas will act as mirrors-any
particle that hits such an area will bounce back the way it came. In
Figure 7.5 we show a wave colliding with a concave mirror formed in
this manner.

Such reflection phenomena using these gases are of course seen
whenever these gases are modified to accomodate obstacles. A more
original modification is to have marked regions follow the original rule
some portion (say half) of the time, and the identity rule the other half
of the time. This results in marked regions having a "sound" velocity
that is half that of unmarked regions. In Figure 7.6 we show the refrac-
tion of a soliton by such a region-we used these high-density waves
supported by our rules (TM or HPP) in order to make the refraction
more evident in this rather low-resolution picture.

This technique may be a useful one for implementing other kinds of
potentials as well.

4.3 Matched pairs

In this section I would like to discuss some pairs of closely related
RCA rules, one of which is a second-order rule, the other of which is a
partitioning rule.

In Section 2.7.1, we gave an illustration of how a second-order rule
can be constructed which simulates a block rule for some subset of its
allowed initial states; here the connection between a block rule and a
second-order counterpart will be even closer, and it will be the initial
states for the block rule which must be constrained to get an equivalent
evolution.

For two second-order rules which provide useful models of physical
systems, we will discuss the effect on the "physics" of the situation of
relaxing the constraint on the block rule which makes the two rules
equivalent.

Let us begin by considering any 1-dimensional second-order RCA
rule that depends on the values of the two nearest neighbors, but not
on the center cell. A portion of the evolution might look like this

"t;-1 . . 0 . I . . .

106 Chapter 4. CA models of physics

t . .1 .0 .0 .1 . I . .

t+l . . . ? . ? . ? . ? . . .

where a dot indicates a cell whose value is irrelevant to the discussion.
The cell values that are indicated explicitly are sufficient to allow our
second-order evolution to compute the states of the cells marked with
'?'. Note that the system decouples into two entirely independent (but
interleaved) space-time sublattices, each evolving without reference to
the other.

In such an evolution, we can eliminate one of the sublattices, and
merge information from pairs of consecutive configurations into single
configurations-the unused cells from step t can be used to hold the
information from step t - 1

t-lt . . 1 1 0 1 0 0 1 1 1
t,t~l . . I ? 0 ? 0 ? I ? I

We alternately update even and odd sites, to get a first-order evdlution
isomorphic to the original.

Similarly, on a 2-dimensional Cartesian lattice, a rule that doesn't
depend on the center cell but does depend on the four nearest neigh-
bors has an evolution that decouples into two interleaved space-time
checkerboards.' As before, we can eliminate one of the sublattices by
merging information from consecutive configurations. If we think of
space as a red and black checkerboard, then we alternately update red
cells and black cells.

In Figure 4.4a we show a 2-dimensional checkerboard, with sites
that are updated on even steps shown as white circles, and sites that
are updated at odd steps shown as white squares. In Figure 4.4b, we
show a closeup view of an odd site that is about to be updated as a
function of its even neighbors. The four dotted lines connecting the
odd site to its four even neighbors can be thought of as bonds, the

1in . number of dimensions, any rule (first or second order) that doesn't
depend on the center cell, and only depends on a single pair of symmetrically
piaced neighbors in each orthogonal direction has an evolution thaL decouple into
interleaved space-time sublattices.

4.3. Matched pairs 107

lo 0 0 0 0 0
ODODODO

- -1 r) I-- 1 n -1 0 n.

Figure 4.4: Checkerboard. Sites updated on even steps are circles, odd step
sites are squares.

values written on the bonds indicate whether (1) or not (0) the center
is the same as that neighbor. The updating will either leave the center
unchanged, or complement it. If the center is complemented, all four
bonds are complemented.

If we just consider the dynamics of the bonds, we see that blocks
of four bonds are either all complemented, or all left unchanged. As
we switch from an even step to an odd step, bonds that were updated
as a group during one step are updated as part of four separate groups
during the next step. Thus this system corresponds to a 2x2 block
partition at 450 to the orientation of the picture. Any second-order
rule (using binary-valued cells) that treats l's and O's symmetrically
and only involves the four nearest neighbors can be recast as a rule
on the 2x2 block partition that, for every case, either complements
the block or leaves the block unchanged. As we have explained in
Section 3.1, all such rules conserve the block parities on the unused
partitions-the significance of this will be discussed in our examples.

There are 16 rules of this kind that are rotationally symmetric (256
without this restriction). If we factor out the fact that f and f generate
equivalent evolutions, there are only 8 distinct rules of this kind. One
of these is the identity rule-we will discuss the use of two of the others
as physical models.

108 Chapter 4. CA models of physics

4.3.1 Dynamical spin models

It was Michael Creutz[17] who first investigated RCA rules suitable for
use in Ising simulations. His simplest first-order rule was intermediate
between a partitioning rule and a second-order rule-it was in fact a
checkerboard updating scheme involving four neighbors, of the sort we
have discussed above. In this scheme, we think of the two cell-states
as being +1 and -1, or spin-up and spin-down. The bonds are the
negatives of the products of two adjacent spins: -1 if the two spins
are equal, +1 if they aren't. The rule for updating is: flip the center
spin if doing so doesn't change the sum of the four bonds connected to
that spin.2 As a second-order rule, this is the Q2R rule that was later
discovered by Vichniac and shown to be an Ising system by Pomeau,
and which has been used for massive Ising simulations by Herrmann[34].
This rule was discussed in the previous chapter, as one which has an
evolution which can be generated from an energy function. As a block
rule, it has the following table (where positive and negative bonds are
represented by E and 0 respectively)

X!EV!EIR __F (4.3)-

Blocks are complemented if they contain exactly two E 's, and left
unchanged otherwise.

This rule has two interesting features, which are worth pointing out.
First of all, it conserves the number of E 's; this corresponds exactly to
the conservation of bond energy. In fact, this rule can be viewed as a
dynamics for the energy, as opposed to a dynamics for the spins.

Secondly, this rule is more than simply an Ising system. Notice
that in our derivation of the correspondence between the checkerboard

2He was mainly concerned with rules that involved a small energy -reservoir
(represented by a few bits) associated with each spin. With a reservoir of 1 or
more bits, the rule becomes: flip a spin if it can be done without changing the total
enegy assctd . .Lsthespinx (including energy in the associated1 reservoir, hc
may be moved to or from the bonds if necessary).

4.3. Matched pairs 109

dynamics and this one, we introduced a variable for every bond. But
bonds are twice as numerous as the cells in the checkerboard. In the
checkerboard system, if we take the sum around any block of four ad-
jacent cells of the bond variables connecting them, we must always get
zero. For our block rule, this is equivalent to requiring that the blocks
on the unused partitions must all contain an even number of N 's. Only
when this condition is satisfied can this block rule correspond to a
checkerboard Ising dynamics. 3 On a periodic lattice, once half of the
cells have been assigned values freely,4 our constraint tells us how to fill
in the rest. To transform to a checkerboard system, we must specify
the state of one spin, and then all other spin values can be determined
from the bond information. This one-bit ambiguity corresponds to the
symmetry in the energy between a given configuration of spins and the
complementary configuration.4

If, in the checkerboard dynamics, we somehow add an extra variable
on each bond, specifying whether it is ferromagnetic or antiferromag-
netic, then we have a spin glass model. In this case, there is no con-
straint on the Eum of the bonds connecting four adjacent spins. Thus
the unconstrained 2x2 block model of Table 4.3 can be interpreted as
a dynamical spin glass model, again following a dynamics which "flips
a spin" (i.e., complements four bond energies) whenever this doesn't
change the total energy.

To a given configuration of bond energies, any configuration of spin
values may be associated, by choosing the bond types to be ferromag-
netic or antiferromagnetic, as appropriate. The subsequent dynamics
of all of these systems (spins plus associated bond-types) will be iso-
morphic from an energetic point of view. Thus the block rule manages
to simulate a deterministic spin-glass dynamics in a manner that "fac-
tors out" irrelevant details about spin orientations-such a rule uses
only 2/3 as many state variables as an equivalent dynamical simulation
which keeps track of the spin values[11].

3For a system with periodic boundaries, we would also :iave the condition that
any horizontal or vertical path that closes on itself must contain an even number of

i S.4Pick any set of cells that can be filled without being limited by the constraints.

110 Chapter 4. CA models of physics

Figure 4.5: Wave propagation. In (a) we have the initial configuration, and
in (b) the state after about 60 steps.

4.3.2 Elastic strings
In Section 3.3 we discussed a rule that is closely related to the Q2R
spin" rule discussed above. In terms of the checkerboard realization,

this rule is the same as the dynamical Ising rule, except that if two
diagonally opposite neighbors are l's, the center spin isn't flipped. If
we only list the cases which change, the block rule corresponding to
this is simply

M --+ MR (4.4)

(and rotations). Empirically it is found that if we start this rule from
any configuration involving a single chain of cells that has no slope
steeper than 450, and which obeys the parity constraint on the unused
blocks that is needed to make this rule correspond to its second-order
counterpart (as discussed in the previous section) we get wave prop-
agation on the string. For example, after about 60 steps of evolution
under this rule, the initial configuration of Figure 4.5a goes into the
configuration shown in Figure 4.5b.

There is a surprisingly simple proof that waves on this string obey
the ordinary linear wave equation-this proof is based on an invariant of
this rule. As mentioned in Section 3.1, this rule separately conserves the

4.3. Matched pairs 111

total number of l's on all positive diagonals of blocks, 5 and the number
of l's on negative diagonals (the one case that changes preserves these
counts). This was already evident in the second-order version of this
rule, where the quantity

E Ct_,(Nt + St + Et + W)
all cells

is conserved, where Ct stands for the value of the center cell at time t,
etc., and also the quantity

E C_,(Nt + St - Et - Wt)
all cells

When we go to the checkerboard version of the rule, we can drop the
time subscripts. Adding and subtracting these two invariants, we see
that E C(N + S) and 2 C(E + W) are separately conserved, which in
the block version just becomes the invariant we've already noticed.

If we draw a 1 that is on the positive diagonal of a block of the
active partition as N, and similarly with the negative diagonal and 0,
then the total number of N 's and the total number of 0 's are conserved
separately. The reason we've used what might seem a contrary choice
of symbols has to do with our parity constraint: blocks on the unused
partitions must have a parity of 0 in order for this rule to be equivalent
to its second-order counterpart. As a consequence, if we are given a
sequence such as "\\V\//V/," there is only one way in which a chain
of l's can be layed down (from left to right) to occupy the diagonals
required by this sequence-just lay out the N 's and 0 's so that you get
an unbroken line (see Figure 4.6).

We are now in a position to prove that our dynamics is that of a
linear wave equation. What we will show is that, given a configuration
corresponding to a sequence such as "\\VV/\//," our dynamics car-
ries all of the even numbered elements of the sequence one way, and all
of the odd numbered elements the other way. Thus the configuration
that we see at any moment is a superposition of a wave travelling to
the right, and a wave travelling to the left, and these two waves may
be of any shape.

5A Cell ,Uis on ,.
A ' t, is on the positive diagonal of a block in one of the active partitions

is also on a positive diagonal in the other active partition.

112 Chapter 4. CA models of physics

+ l

---,-a--I- -0- - +

Figure 4.6: String corresponding to the sequence "\\\/V\."

In terms of our N 's and 0 's, our rule is

(and rotations), all other cases remain unchanged. Now let us follow the
rightward progress of a NXI started in the lower left corner of a block. On
our string, only two cases can arise (because of our parity constraint):

if the block contains two l's side by side (1 b then our - moves up

and to the right (L). If our block contains only a single 1, (M) then
the cell below and to the right must contain a single 1, since this is
the only way that our string can be continued without violating our
constraints. This I is again a N, and so we may imagine that these two
i's interchange, so that the N we are following moves down and to the
right. In either case, the next updating step (on the other partition)
will again find the N that we are following in the lower left corner of a
block.

In a similar manner, we can see that a 0 started in the upper left
corner of a block moves one position to the right along our string at each
step; similarly l's started in the right half of a block move left. Thus
our evolution is equivalent to a 1-dimensional rule acting on strings of

4.3. Matched pairs 113

. ,

NXI 7s, 0. 's, and O's, which alternately interchanges the contents of even
pairs and odd pairs of cells.

In Figure 4.7a, we show a wave that we have constructed. The
right-going sequence is

which yields a wave with a peak. The left-going sequence is

which yields the flattest possible pattern. When we interleave the ele-
ments of these two sequences, we get

which was then transcribed into the chain shown in Figure 4.7a.
Our analysis so far is sufficient for strings that are periodic in space,

such as the one used in Figure 4.5. With the block rule we have been
using, if a string has ends, then these ends remain essentially fixed:

114 Chapter 4. CA models of physics

each end can move vertically between two cells (a dangling end results
in blocks on the unused blocking that have odd parity, and so this
case won't correspond to anything in the second-order rule). When
our rightward moving wave hits such a fixed end, it is reflected. In
detail, each element of the right moving sequence will be "stuck" for
one step when it reaches the right end, and then will begin travelling
leftward. Since the rightmost element of the arriving sequence becomes
the leftmost element of the departing sequence, when a sequence such
as

(a peak) arrives, this will become the sequence

which is a trough. Thus waves reflected from a fixed end are inverted.
In the course of this discussion, you may have noticed something:

the constraint of even inactive-block parities means that no active block
can ever contain exactly two i's on a diagonal in any of our strings. This
means that everything we've discussed so far applies to our spin model
of the previous section just as much as to our "elastic rule" introduced
in this section! If the waves depicted in Figures 4.5 and 4.7 are used as
initial states for our spin model, then they will run as described here.

If we want to have ends that are free to move vertically, we can
modify our rule (4.4) so that it becomes

(and 1800 rotations). All other cases remain unchanged. Since our

horizonta strng have n...t madc u... of the ac in,, o lv in;,g, and ,

we have let these remain fixed, so that vertical bars remain stationary.

4.4. Logic 115

We've added 2 cases which allow a I next to a vertical bar to move freely
along the bar. Note that these cases break the separate conservation of
total l's along positive and negative diagonals: when a 0 arrives next
to a bar, it becomes a N, and vice versa. Thus both the order of l's
and the kind of I are changed, and so a peak such as

moving to the right becomes

(another peak) moving to the left.
These string models have been analyzed entirely in logical terms;

this analysis has the virtue that it is exact.' Unlike the analysis of
a real macroscopic string, there was no opportunity or need to make
use of statistical mechanical methods. By combining gas models with
models related to those discussed here (which can be used to construct
elastic membranes) we arrive at models with statistical potentials.

4.4 Logic

In this section, we will discuss an irreversible logic model, which was
designed to show that we can have a partitioning model which can
perform logic much more compactly than the BBMCA. This model also
illustrates the rather direct way in which partitioning allows a desired
dynamics to be transcribed into a CA rule by providing a sequence of
before/after pictures of a small patch of space.

There are plans to actually brild chips that implement this model in
parallel hardware, and can have cell configurations which will simulate
circuits downloaded to them. This hardware may be able, in some cases,
to simulate these circuits fast enough to allow this chip to actually be
used in place of the hardware that is being simulated (voltage levels
at some input pins would be converted into cell values, and voltage

6For this reason, this model may be of some pedagogic interest.

116 Chapter 4. CA models of physics

levels at other output pins would reflect certain cell values). Thus
although this is thp. furthest of my examples from microscopic physics,
it is perhaps the closest to being realized as a physical system.

This model makes use of four-state cells-if you think of each cell
as containing two bits of data, one of the bits can be thought of as
containing wire data, and the other signal data. A cell that contains
neither wires nor signals will be drawn empty; x will indicate a cell
containing only a wire; o indicates only a signal; and ® indicates both
a signal and a wire.

The rule for wires is very simple: they never move or change, re-
gardless of what's around them. The rule for signals that aren't on
wires is also very simple: they never move or change (they are only
used to influence the behavior of other signals passing nearby).

Thus we only need to illustrate what happens in the cases where
there is at least one signal and one wire. The rule is rotationally in-
variant and inversion symmetric. For cells that contain four "pieces"
of wire, any signals just go straight through

If there are two pieces of wire, signals on the wire follow the wire;

and signals next to a. horizontal or vertical wire cause the signal state
of the adjacent cell to be complemented before it moves

(signals next to a diagonal piece of wire have no effect). If there are
three pieces of wire and no nearby signal, the signal value on each wire

4.4. Logic 117

.....

Figure 4.8: Signal propagation, cross-over, and fanout.

becomes the logical oR of the signals on the other two wires:

If there are three pieces of wire and there is a signal on the remaining
cell, the signal value on each wire becomes the logical AND of the signals
on the other two wires:

Finally, if there is only a single wire in the block, there will be a signal
if there is a signal nearby, but not otherwise:

Now we simply draw the wires for a circuit, and put signals on
them. In Fi'gurc 4.8 we illustrae propagation, crossover, and fanout.
Notice that signals just follow wires, and signal streams simply cross

P ii

Vq
M ;

118 Chapter 4. CA models of physics

................... L ...

Figure 4.9: A NOT gate, an AND gate, and a half-adder.

without influencing each other wherever two wires cross (this is due to
the four-wires case above). To achieve fanout, we just have a wire split
(being careful to make sure that some block has three wires in it, so
that we use the OR case described above).

Figure 4.9 shows configurations that perform NOT and AND opera-
tions, and the last frame shows a binary half-adder consisting of about
half a dozen gates in an area of about four 2x2 blocks (illustrating that
we can achieve quite dense circuitry).

This logic rule could be implemented using unclocked, asynchronous
logic using the techniques of Section 5.2 in the next chapter.

Chapter 5

Time and Spacetime

This chapter deals with several aspects of the idea of time in cellular
automata. There is of course the normal synchronous time that is usu-
ally used to define these models (all cells are updated simultaneously).
We will also talk about asynchronous models, in which each cell runs
as fast as it can, and only waits when a neighbor gets behind, in order
to simulate a synchronous updating. We present a simple new scheme
for achieving such local synchronization that is made possible by the
block partitioning, and which will be used in Chapter 6.

Our discussion of local synchronization will lead us to "relativistic"
cellular automata models, in which our RCA can run its evolution on
different spacelike slices. But first we will talk about the statistical-
mechanical notion of the macroscopic arrow of time in RCA models,
which is quite distinct from the time used by the simulator to perform
the updating.

5.1 The arrow of time

In microscopic physics, the laws seem to be perfectly reversible, and
there is no important difference between past and future; yet macro-
scopically a difference exists. RCA provide a context of a dynamical
system n w-hich the law is known perfectly, in which this same di-
chotomy can be examined.

119

120 Chapter 5. Time and Spacetime

5.1.1 Coming full circle

Let us think about a. large but finite RCA (with periodic boundaries,
say). Being a finite and deterministic digital system, it has only a finite
number of possible states, and so it must eventually get into a state that
it has been in before. Since it is deterministic, it must then do exactly
what it did the first time it went through that state, and so it must cy-
cle. Since it is a reversible system, each state has a unique predecessor,
and so given some initial configuration, our automaton cannot repeat
any successor to this configuration without passing through the given
initial configuration. This behavior should be contrasted with that ex-
hibited by irreversible CA. Such CA may enter a cycle at any point in
time-they do not obey a constraint comparable to that which exists
for RCA. This explains the empirical observation that RCA typically
have much longer periods than non-reversible CA.

Now suppose our rule for our RCA happens to be a computation-
universal one, which allows a rich evolution including the evolution of
intelligent beings (computers if you prefer).1 We can imagine the low-
entropy2 initial state gradually becoming increasingly complex, and
eventually beings arise and perhaps write books. As entropy contin-
ues to increase, the last surviving work of the noted author A falls
to dust. The universe eventually becomes random looking, and all
traces of structure and purpose vanish. This randomness persists for
an unimaginably long time, but not forever. Since our RCA is finite, it
must eventually cycle.

How does it cycle? Does it just suddenly fluctuate back into its
initial configuration?

There is a very simple way to see exactly what happens: starting
from our given initial state, run our reversible rule backwards. Of
course this is also an RCA rule[80]. For initial conditions which aren't
time symmetric (very few are) we get a completely different evolution,

Von Neumann first proposed Cellular Automata as models in which, in princi-
ple, life could arise through the operation of simple mechanical laws. He found CA
which supported patterns of states that could act as general-purpose computers,
and which could make copies of themselves.

2In this section, by entropy we mean some coarse-grained entropy such as those
discussed in Section 2.8.1.

5.1. The arrow of time 121

but again from a low entropy start. Again we expect to get complex
structures, and even beings, but completely different individuals and
situations from what we got going the other way. Finally the last
surviving work of the great author B falls to dust, and we eventually
arrive at our high entropy state from this direction in time. So we see
that the way that the RCA gets back to its initial configuration from
the high-entropy state is by following in reverse an evolution that is
just as rich as the initial evolution!

To try to appreciate how strange this is, let us continue to trace this
second evolution through the high-entropy phase. For endless ages, the
randomness persists, but eventually we see the last surviving work of
A emerge out of the chaos! This is quite surprising, since A has not
yet lived, following the evolution from the given initial state in this
direction in time. We have created a book written by A in a very
indirect manner-by evolving a different universe, and then tracing
randomness for a very long time! As we continue, we see A unwrite his
books, and his whole universe unevolve, and finally we get back to our
initial state.

5.1.2 The order of events

Has the entropy of the universe decreased in this second phase of the
computation? Clearly it hasn't as seen from A's point of view-the set
of states that constitute A's evolution is the same when computed in
either direction in time. We just saw the states in the reverse order
the second time. A's perception of events cannot depend upon the
order in which we see these states-nothing in the states themselves
contains any information about which order we, on the outside, see
them in. From A's point of view, the arrow of time goes from the
simple initial state to the high-entropy middle phase. There is a very
sharp distinction between the direction in which we compute the states,
and the direction in which time flows for beings living in the RCA.

I would refer to the arrow of time relevant to the experience of be-
ings living in the RCA as the arrow of macro-causality. In order to
make predictions about the future behavior of the world based only
upon the observable macroscopic parameters, one would like to treat
the unobservable microscopic variables as uncorrelated, so that the be-

122 Chapter 5. Time and Spacetime

havior of an average member of the ensemble consistent with the macro-
constraints may be assumed. This statistical assumption only has pre-
dictive power when going from low to higher entropy-in order to go
the other way, non-neglectable correlations must be assumed. Thus it is
entropy itself which defines the arrow of time for macroscopic phenom-
ena, and so entropy is always observed (by those inside the automaton)
to increase, by definition. 3

5.2 Synchronous causality

Thus far all of our CA models have been based on the Newtonian no-
tion of a synchronous moment of time during which all cells everywhere
are updated simultaneously. In this section we will discuss the problem
of having systems which don't have any global clock simulate ordinary
synchronous cellular automata. What such systems must do is preserve
the causal structure of a synchronous evolution: the functional depen-
dence of a cell on the past states of other cells must be preserved, even
if the relative timing of updating is changed. If a cell is temporarily
ahead of the others, it must have the state that it would have had if
all other cells had kept step with it. Though timing will not be deter-
ministic, at each place we want the right events to happen in the right
sequence.

5.2.1 CA which are effectively synchronous

Implicit in the usual definition of cellular automata is the requirement
that each step of updating should be equivalent to a simultaneous ap-
plication of the transition rule to all sites.

Since we are unable to build machines which achieve perfect syn-
chronization of activity, we discretize time in order to achieve effectively
perfect synchronization. The usual approach is this: all cells are up-
dated once, in a manner that doesn't depend on the order of updating,

3This assumes that the direction of entropy increase is the same everywhere in
the automaton at once. For certain initial conditions and certain types of rules, this
is -not the case. It seems, though, that all such discrepancies are unobservable from
a given location within the automaton.

5.2. Synchronous causality 123

ard then we repeat this process.
For example, we might use two copies of our system, the old system

and the new system. We look at the neighborhoods in the old system,
and construct the results in the new system. When we have completely
constructed the new system, we no longer need the data contained in
the old system, and so we can interchange the roles of the two systems,
and begin a new updating step.

Each complete updating is a unit of CA time: the actual physical
time interval between consecutive steps is irrelevant-whether it is a
picosecond or a year, one unit of time has passed in our automaton.
The progression of such CA time-steps is analogous to the progression
of months-it is January for everyone before it is February for anyone.
This updating scheme makes use of the idea of a global moment of time:
each cell must wait until a certain time before it can assume that all
cells have finished the current step, and it is free to begin the next step.

Just as the notion of a global moment of time is inessential in
physics, it is also inessential in cellular automata. An effectively syn-
chronous updating can be achieved without it.

5.2.2 Local synchronization

Consider the example of a partitioning cellular automaton (see Sec-
tion 2.3) with 2x2 block partitions. Since each block is updated as a
unit, we don't need to keep a copy of the old state while constructing
the new. We can perform a complete step of updating by process-
ing each block of one partition separately; once all blocks have been
updated, we switch to the other partition. 4

Once four adjacent blocks on the first partition have been updated,
the data for the block on the second partition that is made up of the
four corners of these blocks is ready for the next step. Let us call the
partition that is used during even numbered time steps the even par-
tition, and the one used during odd numbered steps the odd partition.
In general, if all four cells of a block on the even partition have been

4This is exactly the strategy that CAM-7 (see Chapter 7) uses to perform an
effectively synchronous updating without needing to buffer old cell values; it is also
used in Section 6.4.1 in our discussion of Serial Quantum Computers.

124 Chapter 5. Time and Spacetime

updated the same number of times, and this number is even, then the
data in this block is ready to be updated again, and similarly for blocks
on the odd partition.

Thus if we kept track of how many times each cell has been updated,
we could forget about the global state of our automaton and simply
follow the local rule: Update any block in which the data is ready to
be updated. Depending on how often and in what order blocks are
processed using this rule, we would get an enormous variety of global
states for our automaton. However, any cell which is marked as having
been updated n times will have exactly the same value it would have
had if the whole automaton had been updated synchronously n times,
and so once again we have an effectively synchronous evolution.

By only requiring that the data within a given block be ready, rather
than the data for the whole space, we have eliminated the need for a
global clock. If we call the number of times that a given cell has been
updated the time at that cell, then our locally synchronized updating
scheme may re3ult in configurations in which different parts of the CA
space correspond to different moments of time. Because of causality,
there are constraints on the possible patterns of times that we can find
in our automaton. For example, two adjacent cells can never differ by
more than a single unit of time, since they can only be updated once
as parts of two different blocks before they must again be updated as
parts of the same block. If we look at the pattern of times in our CA
space, we may see hills and valleys, but no discontinuities.

5.2.3 Sychronization semaphores

Our scheme of the previous section involved blocks comparing cell times
to see if they were equal, and also checking to see if they were odd or
even. In fact, since adjacent cells can differ in time by no more than
a single step, it is enough to compare whether adjacent cell times are
both odd or both even, to tell if they are the same. Thus we need only
store the parity of the time along with every cell, in order to make our
local-synchronization scheme work.

To use an analogy, an ordinary synchronous cellular automaton is,a hn o sliers *.. *,... 11,,~ 2 1.
aine OL solders marching i . al cels ia1ke a step forwards

together. Our local synchronization scheme acts like a line of people

5.2. Synchronous causality 125

walking forward hand-in-hand: no cell can can move forwards (i.e.,
be updated) until its neighbors have caught up. In this way they are
basing their change on data from neighbors that have been updated the
same number of times as they themselves have.

A piece of state information that is used to synchronize the opera-
tion of otherwise unsynchronized processes is called a semaphore. The
general problem of making asynchronous logic simulate a synchronous
cellular automaton using local synchronization semaphores is discussed
in [80] and [71]; the somewhat simpler scheme based on time parity
bits and partitioning that is described here will be sufficient for our
purposes in this chapter. 5

5.2.4 Asynchronous cellular automata

We will use the term Asynchronous Cellular Automata (ACA) to re-
fer to systems in which the causal structure of a synchronous cellular
automaton is simulated by an asynchronous system by means of local
semaphores. One advantage of using such an unclocked logic scheme
is that each cell is permitted to go as fast as it can: In a globally
clocked scheme you must clock it more slowly than the time taken by
the slowest expected cell, with some extra margin added for safety. A
local scheme is held back only by the slowest actual cell.

In detail, the ACA synchronization scheme that we have developed
above for the 2x2 partitioning automata might operate as follows: If
the time for a given cell is even, then its next update (assuming we're
only allowing forward steps, for the moment) must be as part of an
even block. When all four cells of an even block have even times, then
the updating should first make whatever changes to the cell values are
mandated by the synchronous block rule we're simulating, and only
then complement the time bits to record that these cells have been
updated one additional time. Note that the cell data in all four cells
doesn't have to change simultaneously; we only require that the new
values must depend only on the state that held before the changes
started. Once all cell data within the block has been updated, each

5If we add a time parity bit to each cell of a second-order automaton, a scheme
that is analogous to the one we have discussed here allows local synchronization to
replace a global clock.

126 Chapter 5. Time and Spacetime

,50 =MEN

MEN M

Figure 5.1: Time parity bits form a topographical map showing the
isochrones.

cell's time-parity bit can be complemented. As soon as a cell's time-

parity becomes odd, it is available to be updated as part of an odd block,
using this same proceedure.

In Figure 5.1, we show a configuration of a two dimensional evolu-
tion that follows this scheme. Black indicates a time-parity of 1, white
indicates 0. Connected regions of a single color all have values cor-

responding to the same moment of synchronous time. Thus the time
parity bits trace out a sort of topographical map, in which isochrones
take the place of level areas.

The relative time between any two cells can be reconstructed by

following any path between the two cells. If wc call an odd row one that
passes through the upper left corner of an odd block, and similarly for
odd columns, then whenever we cross from an even row to an odd row
in phase with a change from an even time parity to an odd parity, then
this is a step backwards in time. A step that is out of phase with the
positional parity change is a step forwards in time.

In reversible partitioning schemes, such as the BBMCA model, we
can imagine performing not only updating steps which take a block for-
wards, but backwards steps as well. As long as we only take steps when-
ever the cell data is ready for that step (either forwards or backwards)
and change the time parity whenever we take a step, the evolution will

5.3. Relativity 127

never lose track of the correct relative times at all cells. 6

Notice that the interpretation of our synchronization semaphores
as time parity bits depends upon starting our system with a configura-
tion of these bits that is compatible with a synchronous evolution; we
will find that other possibilities are sometimes useful. For this reason,
we will adopt the more neutral term of guard bits to refer to this syn-
chronization information-these bits protect the causal structure of our
computation from disruption. Synchronization based on guard bits will
be used in Section 6.4.2, when we discuss a parallel model of quantum
computation, as well as in the next section.

5.3 Relativity

In the previous section, we discussed ways of simulating the causal
structure of a synchronous cellular automaton without recourse to non-
local mechanisms. This led us to consider models which have different
simultaneity properties than the synchronous systems that we began
with. In this section we will discuss the relationship between these
ACA models and Lorentz transformations.

5.3.1 Simultaneity

In Figure 5.2 we exhibit the causal structure of a 1-dimensional par-
titioning cellular automaton.7 As usual, time increases going up the
page, while space is spread across the page. The nodes correspond to
the transition rule of this automaton; the arcs correspond to the cell
values. A horizontal line (such as the dotted line marked a) through a
set of arcs corresponds to the set of cell values that would be seen at a
particular moment of synchronous time.

Any line which passes only through arcs and which never has a slope
steeper than 450 (such as the dotted line marked b) represents a space-

61f we contemplate a reversible physical implementation of our RCA system, we
would have to worry about implementing the synchronization scheme reversibly as
well. A thermodynamically reversible version should certainly cause no difficulties
(cf. LO]).

7A similar diagram appears in [71].

128 Chapter 5. Time and Spacetime

/%

...... (a)

->> x
Figure 5.2: Spacetime diagram showing the causal structure of a one dimen-
sional partitioning cellular automaton.

like cut through our CA spacetime. Since all of these cuts have exactly
the same number of cells on them, and since no cell value is ever more
than one step ahead or behind its neighbor, we can actually represent
the configuration represented by this cut in a cellular automaton using
guard bits, as discussed in the preceding section.

Since the guard-bit synchronization scheme works in general, it
works in particular in conjunction with a synchronous updating-we
can add guard bits to our synchronous simulations of 2x2 block par-
titioning automata, and watch evolutions run on various spacelike sur-
faces. In Figure 5.3 we show a version of the BBMCA evolution of
Figure 2.8, where the cells at the right edge correspond to times that
are 128 steps later than those on the left. Because of periodic boundary
conditions, this configuration has the property that points at the right,
which correspond to the most advanced moment of time, are adjacent
to points on the left, which correspond to the most retarded moment.
There is, however, no discontinuity, since the guard-bits only record the
fact ha the s0ope (i time) is alw a p.. itive to the right. Trul e,

5.3. Relativity 129

Figure 5.3: The circuit of Figure 2.8, updated on a different spacelike surface.

for the updating is that every block is updated during the first step in
which its guard bits permit updating.8

In Figure 5.4, we show the same system, with the lower right corner
128 steps later than the upper left. In both figures, the particles travel
more slowly going "downhill" than "uphill," since the fact that a par-
ticle is seen earlier as it moves "downhill" partially undoes its forward
progress.

5.3.2 A Lorentz boost

The situations illustrated in these figures are closely related to Lorentz
transformations-for illustrative purposes we will go through the cor-

sSince each block of guard bits is either complemented or not, the parity of
blocks on the unused partitions is conserved (see Section 3.1). Since all such guard-
bit blocks would have zero parity in a normal synchronous updating, we can use
the parity on these inactive blocks to tell us whether or not the evolution we're
watching is equivalent to a synchronous updating. at least locally. A topologically
preserved uniform slope, such as is present in Figure 5.3, is counted as synchronous
by this accounting.

130 Chapter 5. Time and Spacetime

-. , . ,.. ,., .. . ,r .- .,,.- r +.
"

- - .1

Figure 5.4: Same as previous figure, but with "boost" at a 450 angle.

respondence in detail for the second figure, with the 450 "boost" (the
rule supports particles that move at the maximum velocity-the "light
speed"-parallel and perpendicular to this boost, and so the discussion
is simpler). In order to understand .vhat a normal Lorentz transforma-
tion might look like for these systems, it may help to imagine that the
original system has somehow been physically built in such a way that
the particles are actually realized by photons.9

Let us call the orginal system S, and the system in which a different
simultaneity is being simulated S*. In S* we see as simultaneous events
that were separated in S by an amount of time that increases linearly
with distance. We can calculate the relative velocity that two inertial
frames would have to have in order to produce the observed change in
simultaneity.

In the original system S, the maximum speed that any particle
could travel at was one diagonal position per time step-individual
particles do this. For the purposes of this discussion, we will call such

vWe could, for example, use short flashes of light for particles, and have appro-
priate photomultipliers, etc., inside all of the stationary "mirrors."

5.3. Relativity 131

particles photons, and take their velocity, the speed of light, as our unit
of velocity. Now consider two events that are simultaneous in S*, and
occuring in the upper left and lower right corners of Figure 5.4. The
distance Ax in the original system S between these two events is 256
(in units of "light-travel-time"). The time difference At between these
two events, for the synchronous evolution S, is 128 steps. In S*, the two
corners are simultaneous, as they would be in any frame that shares
the simultaneity properties of S*; therefore At' = 0 in our proposed
moving frame, and

At' = 0 = -f(At - vAx) (5.1)

and so v = At/Ax = 1. Thus this is a boost of 1/2 the speed of light.
We will let S' denote S as seen from a "rocket" frame moving at this
speed.

If we watch the particles in S*, we find that photons travel at a
speed of 1/2 perpendicular to the boost, at speed 1/3 "downhill," and
at speed 1 "uphill." 10 This anisotropy arises because we have changed
the definition of simultaneity without adjusting distances or giving the
system a net drift velocity. Furthermore, there is an overhead in per-
forming the synchronization simulation which has nothing to do with
relativity, and this must be factored out.

As we have noted, events that are happening simultaneously in S* at
two opposite corners will have Ax = 256 and At = 128 in the original
system S. Noting that At = Ax, we can calculate what Ax' (the
distance between these two events in S') should be:

Ax' = -/(Ax - vAt) = -Y(Ax - (Ax)) = 'YAx

Since the distance Ax* we would measure in S* in this direction would
be just Ax, we must use

Ax'= 4'AX* (5.2)

Similarly, if we made a mirror-clock such as the one depicted in
Figure 5.5, in the original system S the time taken for one round-

1 Since the diagonal lines, which represent steps in time, move at the speed of
light down and to the right, and since a photon must lose two steps of forward
travel each time it crosses one of these lines, these speeds are easy to predict from
the change in simultaneity we are imposing.

132 Chapter 5. Time and Spacetime

- /

Figure 5.5: Two mirrors with a photon bouncing between them.

trip by the photon might be some time At. In the transformed- system
S* , since photons only travel at speed 1/2 in this direction, the mea-
sured round-trip time At* = 2At. Relativistically we would expect
At' = -yAt, and so we must use

1At,'= --/t* (5.3)

Finally, in the "rocket" system S' we would expect to see the parts of
our original system that were stationary drifting past at a velocity v up
and to the left. Since the distances and times in S* must be adjusted
to get what we would see in S', the drift velocity that we must add in
S* to complete the correspondence is not simply v. If an object that is
stationary in S is observed in S' to drift a distance Ax' in a time At ,

then the relative velocity seen in S' will be

AX, 2,yAx* 3

At, lYAt* 2

1 1

Thus for v 5.5: we must add a drift of v* boup and to the left to our
system S*. If we imagine such e drift, and use equations (5.2) and (5.3)

5.3. Relativity 133

to convert from S* distances to S' distances, then we can interpret S*
as being a Lorentz boosted system (for example, with this correction,
photons will travel at unit speed in all four directions). Of course this
drift could have been calculated directly from the observed speeds of
photons in S*, and the requirement that photons travel at the same
speed "uphill" and "downhill."

Thus if we just watch the evolution of our transformed system S*,
we see qualitatively what we would in a true Lorentz transformation.
The system will be stretched somewhat along the direction of the boost,
but otherwise all of the instantaneous features of each configuration will
be correct.

5.3.3 Lorentz invariance

Lorentz transformations are important in physics because Lorentz in-
variance seems to be a property of physical law. For the BBMCA sys-
tem that we discussed above, there doesn't seem to be any important
sense in which the law is form-invariant under a Lorentz transformation.
Let us consider other candidates.

In RCA gas models such as those discussed in Section 4.2, there is
only one particle velocity-everything moves with this one velocity, and
all collisions conserve momentum. We could imagine classical particles
that move at the speed of light, and which we could, in a gedanken
experiment, start off on a grid so that at integer moments, all particles
are found back on the grid, much as we did for the Billiard Ball Model
of Section 1.3.

Now it is known that some of these latticc gas systems, in the limit
of slow flows, reproduce the isotropic Navier Stokes equation in terms of
the behavior of particle densities[26]. It has been suggested 1' that such
systems may actually be, in some statistical sense, Lorentz invariant.
We have not reached a conclusion in this matter.

'1 Tommaso Toffoli is the first to have suggested this, to my knowledge.

134 Chapter 5. Time and Spacetime

Chapter 6

Quantum Computation

When we describe the operation of a computer, we are of course describ-
ing the dynamical evolution of a physical system. What distinguishes
a computer from other physical systems is its ability to simulate many
aspects of other physical processes (including, in particular, the logical
operation of any other computer, given enough time and memory[521).
As we have seen, for several recent models of computation the mapping
between the computer and the underlying physics is quite direct. This
has lead us to ask the question: How similar can the models used to
describe computers be made to microscopic physics? This has an im-
portant bearing on the ultimate limitations of computing mechanisms,
as we have seen.

We have presented a number of deterministic models of computa-
tion, including Fredkin's classical mechanical Billiard Ball model. But
of course the world is quantum-mechanical, and so what we would re-
ally like is to understand the computational capabilities of microscopic
quantum systems.

It may well be that to take best advantage of.the computational ca-
pabilities of such systems we must reformulate our notion of a computa-
tion. However, in this chapter I will restrict my attention to the more
straightforward problem of asking whether or not an ordinary deter-
ministic computation can be described within the quantum formalism

135

136 Chapter 6. Quantum Computation

by a plausible Hamiltonian.1 This discussion will be an extension of
work by Benioff[4,5] who first raised this issue, and Feynm?.d[23] who
first exhibited a plausible Hamiltonian which could compute. I will
use the BBMCA model of Section 2.4 as the basis of simple, uniform
and explicit Hamiltonian models that embody the ideas of Benioff and
Feynman, and then address for the first time the problem of construct-
ing "quantum" models of parallel computation[47]. The synchroniza-
tion scheme discussed in Section 5.2 was invented specifically for this
purpose, and the BBMCA makes it possible to consider. simple and uni-
form models which only involve the interaction of nearby neighboring
subsystems.

2

6.1 Approaches to Quantum Computa-
tion

I will discuss two approaches that have been taken to the question of
the possibility, in principle, of Quantum Computation (QC). Since the
time-evolution operator in QM is always a unitary (and hence invert-
ible) operator, both approaches are based on the notion of a reversible
computer.3 The two approaches are distinguished by whether the time-
evolution operator or the Hamiltonian operator is taken as the starting
point for the discussion.

1We will not consider here the very interesting issue of a computer which is a
Universal Quantum Simulator [22]. Such a computer would be a QM system which,
started from an appropriate initial state corresponding to a state of any given QM
system, would evolve in time t proportional to that taken by the given system into
a QM state corresponding to the t-evolved state of the given system. Measurements
performed on the simulator would correctly reproduce the QM statistics one would
have obtained by performing an experiment on the original system. Such a simulator
would provide an alternative to the present computational methods used to predict
the consequences of QM models. Deutsch[18] discusses this problem, but doesn't
address the important issue of the spatial locality of the Hamiltonian.

2A version of the material in this chapter appears in my paper Quantum
Computation[47].

3'rL.. c- .: .i I r LL,,c I,eVeil ,u,,, o ,,e measurement process will lnoL boer us here, since
we will be concerned with a dynamical evolution governed by the Schr6dinger
equation-there will be no measurements while the computation is proceeding.

6.1. Approaches to Quantum Computation 137

A
B

CD

Figure 6.1: A simple 3-state machine. If the "computer" is in state A, it
will go into state B. State B goes into A, and C doesn't change.

6.1.1 Time-evolution operator approach

The first discussion indicating that QC was not necessarily inconsistent
with the formalism of QM was that of Paul Benioff [4,5]. It depends
upon the observation that the Schr~dinger evolution of the wave func-
tion is perfectly deterministic. If one associates a basis vector with
each possible logical state of a reversible computer, then the one-step
time-evolution which carries each state into the appropriate next state
is a permutation on the set of basis states, and so is given by a unitary
operator. Formally, it is always possible to write down an hermitian op-
erator whose complex exponential equals this unitary operator. Given
an initial logical-basis state, the Schr6dinger evolution generated by
this Hamiltonian will give the appropriate successor logical states at
consecutive integer times.4

For example, if we let the possible configurations of the three state
"computer" described in Figure 6.1 be represented by

'Although the Schr6dinger equation is a linear differential equation, in QM we
allow a large enough set of basis vectors (one per configuration) so that a unitary
operator can take a computer through an arbitrary invertible sequence of configu-
rations. In particular, there is no difficulty in having the computer compute such
"non-linear" functions as logical AND and oft.

138 Chapter 6. Quantum Computation

A= 0 B= 1 C= 0
0o 0 1

then the time evolution given in Figure 6.1 can be represented by the
unitary single-time-step operator

U= 100

0 0 1

and from U we can find an hermitian matrix such that U = e- H. In
this case, (r

2 2
0 0 0

6.1.2 Hamiltonian operator approach

One would like the Hamiltonian operator H to be given as a sum of
pieces, each of which only involves the interaction of a few parts of
the computer which are near to each other. The most direct way of
ensuring that H is of this form is to write H down ab initio, rather
than derive it from U.

Richard Feynman was the first to discuss this approach[23,6]. He
realized that if the unitary operator F which describes one step of the
desired forward evolution can be written as a sum of local pieces, then
if we let H = F + Ft be the Hamiltonian operator, H will also be a
sum of local (i.e., nearby-neighbor) interactions. The time-evolution
operator U(t) = e- iHt is then a sum of powers of F and Ft, taken with
various weights. Thus if In) corresponds to the logical state of a com-
puter at step n (i.e., F In) = In + 1)) then U(t) In) is a superposition
of configurations of the computer at various steps in the original com-
putation. This superposition contains no configurations which aren't
legitimate logical successors or predecessors to In): if you make a mea-
surement of the configuration of the computer, you will find it at some
step of the desired computation. If instead you simply measure some
piece of the configuration which tells you whether the computation is

6.2. A reversible model of computation 139

done or not, then when you see that it is done, you can immediately
look elsewhere in the configuration to find the answer, and be assured
that it is correct. Alternatively, one may construct a superposition of
configuration states that acts as a sort of wave-packet state in which
the computation moves forward at a uniform rate.

In order to write F = E Fi with F a unitary operator, Feynman
described a computer in which only one spot is active at a time. If
instead of taking E Fi to be unitary we only require the Fi's to be
local, it turns out that we can describe a computer where all sites are
active at once, but there is no longer a global time-synchronization
becomes a matter of local intercommunication.

6.2 A reversible model of computation

We will illustrate the two approaches in terms of the BBMCA model of
Section 2.4. This model is an obvious candidate for us to try to describe
in terms of a lattice of QM spins. Here QM may even be superior to
classical mechanics, since it is more natural to have identical two-state
systems in QM (cf. [95,41]). In such an RCA model, during one logical
step information has only to be communicated to nearby neighboring
spins-data-paths are very short and so the impact of the finite light-
speed restriction on computation speed is minimized.'

6.3 Time-evolution operator approach

In order to implement the BBMCA rule as a QM model, we will consider
a two-dimensional lattice of spins, each of which is in a spin-component
eigenstate with respect to the z-direction, which is taken to be perpen-
dicular to the plane of the lattice. At each site, spin-up represents a
logical 1, and spin-down a logical 0.

At a given lattice site with coordinates (i, j), the projection operator
Pij = (1 + o,j)/2 projects states which have a logical 1 at site (i,j),
and the operator Pij = (1 - ai)/2 = 1 - Pj projects states with 0

5For computations which can take advantage of this architecture. See Chapters
4 and 7.

140 Chapter 6. Quantum Computation

at (ij). The operator ai, = (ai- - icr,)/2 lowers a 1 at (ij) to a 0,
while at = (aj + ia,)/2 raises a 0 at (ij) to a 1.

We can now construct a unitary operator which will implement the
BBMCA rule (Table 2.2) applied to a block of four sites, with upper-
left-corner at position (ij):
Ai = (aijal+1 ,1 +1 + j+)P-+jjP+

-[(i+,j~+l + atq~~i j.)'i'iqljl

+)1,a~ 1 i, 1Ti+1 1 +1
-(ai,jat+,,jt ai+lj+1 + aj a+li,+l a 4i7+1)

+1 - (P, 1jPi+1,1j+1 + Pi+ijpij+i - 2Fjj+jj ,j+l +jj+j)

If Ai,j is applied to a configuration of l's and O's, all of the lattice
sites except those in the block at (ij) will remain unchanged-this
block will change according to the BBMCA rule. If we let

Uo= I Ai, , U1 = fI Ai
i,j even ij odd

then U = U1 UO is a unitary operator which exactly implements the
BBMCA rule.6 U(t) = Ut/2 (t an even integer) will exactly correspond
to a BBMCA evolution at even integral times.

Now we will try to write U(t) = e- iHt , with H a sum of local pieces.
We begin by noting that A?. = 1 (follows from the BBMCA rule).
Therefore ((1 - Ai,)/2)2 = (1 - Ai,)/2, and exp(-iz(1 - Ai,)) = Aij
(expand the exponential). If we let Hi, = !(1 - Asi), then

Uo-= fJ ..e_2iieVe Hi,1io U1 = e-i Eij odd Hie,

ij even

and U(t) = e- iHt, where H = Eij even Hi when the integer part of t is
even, and H = Eijodd Hi, at odd times.

This U will reproduce the BBMCA evolution at all integer times.
Intuitively, the reason we had to introduce a time dependence into H
is because the Hi,'s at a single time step all refer to non-overlapping
blocks of spins, and so they all commute, allowing the product UO or

61t has been suggested[4,56] that in order to construct a time independent H for
a U such as this, it is necessary to know explicitly the configuration of I's and O's
at each step of every possible computation in advance.

6.4. Hamiltonian operator approach 141

: : : i7o .16 ::15
...... j7.15

.4 3:
:12 :13 :14

..o!. . ..:.

:11 J1 0 9

First 9 steps. Next 9 steps.

Figure 6.2: A 6x6 lattice with periodic boundaries. All 2x2 blocks in the
solid partition are updated, and then all blocks in the dotted partition.
Because of periodicity, 9 through 17 mark the centers of dotted blocks.

U, of exponentials to be turned into an exponential of a sum. The
even-block and odd-block Hjj's don't all commute-since the blocks
overlap it makes a difference in which order the Hij's are applied.

6.4 Hamiltonian operator approach

6.4.1 Serial computer

We can use Feynman's method to arrive at a time-independent version
of the BBMCA.

We will use a 6x6 lattice (Figure 6.2) to illustrate the technique.
The boundaries are periodic-we can imagine the lattice as being phys-
ically wrapped around into a torus, so that opposite edges touch. Now
we divide a complete updating of the lattice into 18 independent steps,
as shown in Figure 6.2. The step during which each 2 x 2 block is up-
dated is indicated near its center, and (ik,jk) are the coordinates of the
upper-left-hand corner of the kA block. We introduce an extra "clock"
spin at the center of each block, and let ck = ax - io' be the lowering
operator acting on this clock spin.

We can now write the unitary operator F which in 18 steps accom-
plishes one complete updating of all the even and then all of the odd

142 Chapter 6. Quantum Computation

blocks on the lattice, as a sum of operators which each act on one block
only:

17

F-ZFk , where Fk=Aik 4+1 Ck
k=O

and we start the lattice off with the clock-spin in block #0 up, and all
of the rest of the clock-spins down.

If 10) is the initial state, then F 10) = 11), the state where block
#0 has been updated, and block #1 is waiting to be updated, F 11) =
12),... , F 117) = 118), the state where one complete updating of all the
blocks has been accomplished and the "up" clock-spin is in block #0,
etc.

We have thus been able to write the forward time-step operator as
a sum of local pieces by serializing the computation-only one block of
the automaton is active during any given step.

Now we may write down a Hamiltonian operator H = F + Ft -

Ek Hk (where Hk = Fk + Ft) which is a sum of local interactions. If
In) is evolved for a time t, it becomes e - i In) which is a superposi-
tion of configurations of the serialized automaton which are legitimate
successors and predecessors of In).

We would like to make our automaton evolve forwards at a uniform
rate-we can do this by constructing a wave-packet state. If we let N
be the step-number7 operator (N In) = n In)) then

d (N) = H])= (V) where

V = [N, H] F -F t [H

i i

Thus the eigenstates of V have (N) which changes uniformly with
time, and they can be chosen to be simultaneous eigenstates of H also.

7 10) is distinguished from 118) by looking at the computation part (as opposed to
the clock spins part) of the state. To define N, we must choose some configuration
of I's and O's on each dynamical orbit of the BBMCA rule and call it the first
configuration. For our "quantum" system we will only make use of states that have
a single clock-spin up: step number zero corresponds to the up clock-spin being in
block #0 of the first configuration.

6.4. Hamiltonian operator approach 143

This allows us to make a superposition state from V's eigenstates which
has a fairly sharply-peaked step-number, and for which the computation
proceeds at a uniform rate.

This corresponds closely to Feynman's original construction. Peres
[56] noticed that we have the freedom to introduce coefficients wk mul-
tiplying each Hk, and that with an appropriate choice (neglecting for a
moment the Aij's) H becomes essentially the angular momentum op-
erator J,. This technique would allow us to start the system in state
10) and be assured of finding the system in state 117) after some pre-
scribed time T that sets the scale for the wk's. However, the system
would then undo its evolution, and be back in state 10) at time 2T.
Thus this technique is not useful for making our system run through a
repeating computation cycle. If we want V to commute with H, then
we are forced to set the wk's to a constant, as Feynman did.

This seems to be the best we can do with a serial computer that
rur, in a cycle. A Hamiltonian with a clock which gives exactly F when
exponentiated (which is what we would ideally want) is necessarily non-
local[57].

6.4.2 Parallel computer

In order to be able to write F = E Fjj with F a unitary operator, we
described a computer in which only one spot was active at a time. We
will now drop the restriction that E Fij be unitary.

Let H - , Fj + .F-,. U(t) = e-iH, will now be a sum of terms
involving all possible combinations of powers of the various Fjj's and
FY-'s. If U(t) 10) is to be a superposition of configurations which cor-
respond to legitimate classical evolutions from 10), then states where
part of the automaton has been updated, while other parts haven't,
must be allowed. This sort of cellular automaton where there is no
global clock (as there has been in all of our preceeding discussion) is an
asynchronous cellular automaton-such systems have been discussed in
Section 5.2.

For an ACA to simulate an ordinary (synchronous) CA it uses a
little extra state information, to Len We places that get ahead to wal ;

for their neighbors to catch up. For a block rule such as the BBMCA,

144 Chapter 6. Quantum Computation

the additional information consists of a single guard bit added to every
cell. The rule applied to a block will be the same as before, except that
(for a forward step) an even block can only be updated if all four guard
bits are O's, and odd blocks only if they are all one's. When a block is
updated, :ts guard bits are all complemented. As we have seen, this is
sufficient to ensure that all four values in a block will always correspond
to the same (synchronous) moment of time when they are updated. The
guard bits will record the hills and valleys in time (relative numbers of
cell updates) as a sort of topographical map, drawn using only i's and
O's.

If we imagine that the guard bits are spins in a lattice that
sits directly below our original BBMCA lattice, and let gij be
the lowering operator for a spin at the site (i,j) on the guard-
bit lattice, then our forward-step operator for the site (ij) is

t t t tgiven by Fj1 = Aijgig41gi,1+1 gi+,+j for (i,) even, --=

Ai,jgjj, gi,j+jgj+igj 4-,i+j for (ij) odd, and F = E Fj acting on a
given configuration will produce a superposition of configurations, each
of which has advanced one step at some location.

F! has the g's and gt's interchanged, relative to the definition of
Fj, and so it implements a possible step backwards rather than for-
wards.

For both even and odd blocks, Hij = F + Ft =

A (gi, gi+l ,1 gi,1+l gi+i+I + gij gi+i,j gi,j+i gi+1,i+1), and H =

Eeven or odd blocks Hij

This model can be made to perform a computation by occasionally
checking for a "computation done" flag-some particular group of cells
which the computation will set to certain values when it is done. The
appearance of such a flag ensures that there is an unbroken chain of sites
that connect the. flag to the place that signaled it to appear, none of
which car, corre;pond to moments of time in the equivalent synchronous
evolution that precede the moment the signal passed that site. Thus
if the flag signal was produced by a process that first put the answer
somewhere, the answer must still be available there when the "done
flag" is seen.

,f coursw woul y to do to show tt c

make this sort of computer run at a uniform rate. The difficulty here is

6.5. Discussion 145

that if we let N be an operator which, when applied to a configuration
state, returns the average synchronous-step in that configuration, and
V = [N, H]/i, we find that V doesn't commute with H, and so the
situation is more complicated than it was in the serial-computer case.

I don't know if this computer can be made to "run" in a reason-
able fashion. Perhaps it would be worthwhile to study ways in which
such a model could be driven by an external field-turning it into a
thermodynamically reversible model, a' la Bennett.

6.5 Discussion

As it is quantum mechanics which today embodies our most funda-
mental understanding of microscopic physical phenomena, in our quest
for faster and more efficient computation we are naturally led to the
problem of trying to describe computing mechanisms which operate in
an essentially quantum-mechanical manner.

In this chapter I have attempted to extend Feynman's method for
constructing a "quantum" Hamiltonian model of computation in order
to arrive at a model in which the parallelism inherent in the operation
of physical law simultaneously everywhere is put to use. The com-
bination of parallelism and locality of interaction makes such models
asynchronous: I introduced a local synchronization scheme to allow
such a model to simulate a synchronous causality. I arrived at a model
which, started from any state on a given (asynchronous) computational
orbit, will only visit other states on this same orbit, or superpositions of
such states. It is not clear how to make such a model run at a uniform
rate.

146 Chapter 6. Quantum Computation

Chapter 7

Cellular Automata Machines

The charter of the Information Mechanics Group at the MIT Labo-
ratory for Computer Science h. bcen to study the physical bases of
computation, and the computational modeling of physics-like systems.
This has led us to study areas such as reversible computation and cel-
lular automata.

In 1981, our frustration with the capabilities of conventional com-
puters for simulating cellular automata became acute when we tried to
study the large-scale, long-term behavior of some remarkable reversible
rules. We were also excited by the prospect that with more appropri-
ate hardware one would be able to run cellular automata at the speed
of a movie rather than that of a slide show, and actually watch their
time-averaged macroscopic evolution.

Tom Toffoli built the first prototype at home, using a few TTL
chips-a sequential machine that scanned a two-dimensional array of
cells, producing new states for the cells fast enough and in the right
order so that it could keep up with the beam of an ordinary raster-scan
television monitor. After a few years of experimentation and refine-
ment, we arranged for a version of our machine, namely CAM-6, to be
produced commercially, so that others could get in on the fun[14,80].
The architecture of this machine is discussed in Section 7.3, and my
design for a much larger machine is discussed in Section 7.6.

The existence of CAM's (Cellular Automata Machines) has already

147

148 Chapter 7. Cellular Automata Machines

had a direct impact on the subject of CA simulations of fluid mechanics.
In playing with gas-like models, we found one that Yves Pomeau had
previously investigated-the HPP gas[31].1 As Pomeau tells us, seeing
his CA running on our machine made him realize that what had been
conceived primarily as a conceptual model could indeed be turned, by
using suitable hardware, into a computationally accessible model, and
stimulated his interest in finding CA rules which would provide better
models of fluids[26].

In fact (as we shall see below) the advantages of an architecture
optimized for CA simulations are so great that, for sufficiently large
experiments, it becomes absurd to use any other kind of computer.

7.1 Truly massive computation

Cellular automata constitute a general paradigm for massively parallel
computation. In CA, size and speed are decoupled-the speed of an
individual cell is not constrained by the total size of the CAM. Maximum
size of a CAM is limited not by any essential feature of the architecture,
but by economic considerations alone. Cost goes up essentially linearly
with the size of the machine, which is indefinitely extendible.

These properties of CAM's arise principally from two factors. First,
in conventional computers, the cycle time of the machine is constrained
by the finite propagation speed of light-the universal speed limit. The
length of signal paths in the computer determines the minimum cycle
time, and so there is a conflict between speed and size. In CA, cells
only communicate with spatially adjacent neighbors, and so the length
of signal paths is inherently independent of the number of cells in the
machine. Size and speed are decoupled.

Second, this locality permits a modular architecture: there are no
addressing or speed difficulties associated with simply adding on more
cells. As you add cells, you also add processors. Whether your module
of space contains a separate processor for each cell or time-shares a
few processors over many cells is just a technological detail. What is
essential i that adding more cells doesn't increase the time needed to

... L. . 16S tV U our attention by Gerard Vichniac, then working
with our group.

7.2. A processor in every cell? 149

update the entire space-since you always add associated processors at
a commensurate rate. For the forseeable future, there are no practical
technological limits on the maximum size of a simulation achievable
with a fixed CAM architecture.

The reason that CA can be realized so efficiently in hardware can
ultimately be traced back to the fact that they incorporate certain
fundamental aspects of physical law, such as locality and parallelism.
Thus the structure of these computations maps naturally onto physical
implementations. It is of course exactly this same property of being
physics-like that makes CA a natural tool for physical modeling (e.g.,
fluid behavior). Von Neumann-architecture machines emulate the way
we consciously think: a single processor that pays attention to one
thing at a time. CA emulate the way nature works: local operations
happening everywhere at once. For certain physical simulations this
latter approach seems very attractive.

7.2 A processor in every cell?

In order to maintain the advantages of locality and parallelism, CAM's
should be constructed out of modules, each representing a "chunk" of
space. The optimal ratio of processors to cells within each module is a
compromise dictated by factors such as

9 technological and economic constraints,

* the relative importance of speed versus simulation size,

* the complexity and variability of processing at each cell,

* the importance of three-dimensional simulations,

9 I/O and inter-module communications needs, and

* a need for analysis capabilities of a less local nature than
the updating itself.

Just to give an idea of one extreme at the fine-grained end of the
spectrum, consider a machine having a separate processor for each cell,

150 Chapter 7. Cellular Automata Machines

and some simple two-dimensional cellular-automaton rule built in.2 We
estimate that, with integrated-circuit technology, a machine consisting
of 1012 cells and having an update cycle of 100 pico-seconds for the
entire space will be technologically feasible within 10 years. If the same
order of magnitude of hardware resources contemplated for this CAM
(using the same technology) were assembled as a serial computer with
a single processor, the machine might require seconds rather than pico-
seconds to complete a single updating of all the cells.

There are serious technological problems which must be overcome
before three-dimensional machines of this maximally-parallel kind will
be feasible. The immediate difficulty is that our present electronic tech-
nologies are essentially two-dimensional, and massive interconnection
of planar arrays (or "sheets") of cells in a third dimension is difficult.
In the short term, this problem can be addressed by time-sharing rel-
atively few processors over rather large groups of cells on each sheet;
this allows interconnections between sheets to also be time-shared. The
architectures of the CAM's built by our group make use of this idea.

A more fundamental problem which will eventually limit the size of
CAM's is heat dissipation: heat generation in a truly three-dimensional
CAM will be proportional to the number of cells, and thus to the volume
of the array, while heat removed must all pass through the surface of
this volume. As we have discussed in Chapter 1, this problem can in
principal be reduced dramatically by employing reversible logic, and a
universal RCA rule such as the BBMCA rule of Section 2.4.

7.3 An existing CAM

CAM-6 is a cellular automata machine based on the idea that each
space-module should have few processors and many cells. In addition
to drastically reducing the number of wires needed for interconnecting
modules (even in two dimensions) this allows a great deal of flexibility in
each processor while still maintaining a good balance between hardware
resources devoted to processing and those devoted to the storage of

2 This approach does not necessarily restrict one to a single specific application.
There are simple universal rules (cf. LOGIC in Section 4.4) which can be used to
simulate any other 2-dimensional rule in a local manner.

7.3. An existing CAM 151

state-variables (i.e., cell states).
Each CAM-6 module contains 256K bits of cell-state information

and eight 4K-bit lookup tables which are used as processors. Both cell-
state memory and the processors are ordinary memory chips, similar
to those found in any personal computer. The rest of the machine
consists of a few dozen garden-variety TTL chips, and one other small
memory chip used for buffering cell data as it is accessed. All of this fits
on a card that plugs into a personal computer (we used an IBM-PC,
because of its ubiquity) and gives a performance, in many interesting
CA experiments, comparable to that of a CRAY-i.

The architecture which accomplishes this is very simple.
Cell-state memory is organized as 65536 cells in a 256x256 array,

with 4 bits of state in each cell. The cell states are mapped as pixels on
a CRT monitor. To achieve this effect, all 4 bits of a cell are retrieved
in parallel (with the array being scanned sequentially in a left-to-right,
top-to-bottom order). The timing of this scan is arranged to coincide
with the framing format of a normal raster-scan color monitor-cell
values are displayed as the electron beam scans across the CRT. Thus
a complete display of the space occurs 60 times per second.

Such a memory-mapped display is very common in personal com-
puters. What we add (see Figure 7.1) is the following: as the data
streams out of the memory in a cyclic fashion, we do some buffering
(with a pipeline that stretches over a little more than two scan lines)
so that all the values in a 3x3 window (rather than a single cell at a
time) are available simultaneously. We send the center cell of this win-
dow to the color monitor, to produce the display as discussed above.
Subsets of the 36 bits of data contained in this window (and certain
other relevant signals) are applied to the address lines of lookup tables:
the resulting 4 output bits are inserted back in memory as the new
state of the center cell. In essence, the set of neighbor values is used
as an index into a table, which contains the appropriate responses for

3For the simulation of extremely simple CA rules, without any simultaneous
analysis or display processing, any computer equipped with raster-op hardware will
be able to perform almost as fast as CAM-6, since this CAM is really just a specialized
raster-op processor. These computers will not be able to compete as the processing
becomes more sophisticated, or as we add more modules to simulate a bigger space
without any slowdown.

152 Chapter 7. Cellular Automata Machines

each possible neighborhood case. Even when a new cell state has been
computed, the above-mentioned buffering scheme preserves the cell's
current state as long as it is needed as a neighbor of some other cell
still to be updated, so that every 60-th of a second an updating of the
entire space is completed exactly as if the transition function had been
applied to all cells in parallel.

Four of the eight available lookup-table processors are used simul-
taneously within each module, each taking care of updating 64K bits
of cell-state. The other four auxiliary lookup tables can be used, in
conjunction with a color-map table and an event-counter, for on-the-
fly data analysis and for display transformations. They can also be
used directly in cell updating. A variety of neighborhoods are avail-
able, each corresponding to a particular set of neighbor bits and other
useful signals that can be applied as inputs to the lookup tables. These
neighborhoods are achieved by hardware-multiplexing the appropriate
signals under software control of the personal-computer host.

Most of CAM-6's power derives from this use of fast RAM tables
(which can accomplish a great deal in a single operation) as processors.

4K x 4
lookup table

254 x 254
4-bit cells

INeighborhood Neto

Pipeline buffer

Figure 7.1: As the 4 planes are scanned, a stream of 4-bit cell values flow
through a pipeline-buffer. From this buffer, 9 cell values at a time are avail-
able for use as neighbors. Of these 36 bits, up to 12 are sent to the lookup
table, which produces a new 4-bit cell value.

7.4. Physical modeling with CAM-6 153

Connectors are provided to allow external transition-function hard-
ware (such as larger lookup tables or combinational logic) to be sub-
stituted for that provided on the CAM-6 module. Such hardware only
needs to compute a function of neighborhood values supplied by CAM-
6, and settle on a result within 160 nanoseconds. The CAM-6 module
takes care of applying this function to the neighborhood of each cell
in turn and storing the result in the appropriate place. If the external
source for a new cell-value is a video camera (with appropriate synchro-
nization and A/D conversion), then CAM-6 can be used for real-time
video processing.

The connectors also allow external signals to be brought into the
module as neighbors, allowing the output of an external random num-
ber generator, or signals from other CAM-6 modules, to be used as
arguments to the transition function. When several modules are used
together they all run in lockstep, updating corresponding cell positions-
simultaneously. Three-dimensional simulations can be achieved by hav-
ing each module handle a two-dimensional slice, and stacking the slices
by connecting neighbor signals between adjacent slices.

The hardware resources and usage of CAM-6 are discussed in more
detail in the book Cellular Automata Machines: a new environment for
modeling[80]. For illustrative purposes a few of the physical modeling
examples discussed in this book will be surveyed in the next section
(some of these are discussed in more detail in Chapter 4).

7.4 Physical modeling with CAM-6

CAM-6 (simply 'CAM' in this section) is a general-purpose cellular au-
tomata machine. It is intended as a laboratory for experimentation,
a vehicle for communication of results, and a medium for real-time
demonstration.

The experiments illustrated in this section were performed with a
single CAM module, with no external hardware attached.

Time correlations. Figure 7.2 shows the results of some time-
correlation experiments that made use of CAM'S event counter. In these
simulations, two copies of the same system were run simultaneously,
each using half of the machine. Corresponding cells of the two systems

154 Chapter 7. Cellular Automata Machines
Li (t).....

10- 2 (a)

(b)

lo- 3

0- 1

I I I I I I I 1 iII i

t 10 100 1000

Figure 7.2: Time-correlation function v(t) for HPP-GAS (a), TM-GAS (b), and
FlP-GAS (c).

were updated at the same moment. Each run was begun by initializing
both systems with identical cell values, and then holding one of the
systems fixed while updating the other a few times. The systems were
then updated in parallel for several thousand steps, with a constant
time-delay between the two versions of the same system. Velocity-
velocity autocorrelations were accumulated by comparing the values of
corresponding cells as they were being updated, and sending the results
of the comparisons to a counter that was read by the host computer
between steps. In addition to time-correlations, space and space-time
correlations could similarly be accumulated simply by introducing a
spatial shift between the two systems before beginning to accumulate
correlations. The three time-correlation plots refer to three different
lattice gases; each data point represents the accumulation of over a bil-
lion comparisons. The whole experiment entailed accumulating about
3/4 of a trillion comparisons, and took about two-and-a-half days to
run.

Sef dikusion. Figure 7.3 i6 a histogram showing the probability
that a particle of the TM-GAS lattice gas (see Section 4.2.1) started at the

7.4. Physical modeling with CAM-6 155

Figure 7.3: Histogram of P(x, y; t)-the probability that a particle of TM-GAS
will be found at x, y at time t-as determined by a long series of simulation
runs on CAM.

156 Chapter 7. Cellular Automata Machines

. ,. ..

Figure 7.4: Expansion of a TM-GAS cloud in a vacuum. Repeated collisions
between particles and with container's walls eventually lead to thorough
thermalization.

origin of coordinates will be found at a position (x, y) after some fixed
number of steps (1024 steps in this case).4 The data was accumulated
by "marking" one of the particles (using a different cell value for it
than for the rest, but not changing its dynamics) and then using the
auxilliary lookup tables in combination with the event counter to track
its collisions, and hence its movements. For each (x, y) value the height
of the plot indicates the number of runs in which the particle ended up
at that point.

Though such an experiment requires a massive amount of computa-
tion, the essenti.ol results of each run can be saved in a condensed form
(as a string of collision data for a single particle) for post-analysis. In
this way, a single experiment can be used for studying various kinds of
correlations.

4This experiment was conducted by Andrea Califano.

7.4. Physical modeling with CAM-6 157

Figure 7.5: A plane pulse traveling towards a concave mirror (a) is shown
right after the reflection (b) and approaching the focal point (c).

Thermalization. Figure 7.4 shows the expansion of a clump of
particles of TM-GAS. In this experiment one bit of state within each
cell is devoted to indicating whether or not that cell contains a piece
of the wall; this bit represents a boundary-condition parameter of the
simulation, and doesn't change with time. Other state information in
each cell is used to simulate the moving gas. Cells which don't border
on a wall follow the T1-GAS rule. Near a wall, the rule is modified so
that particles are reflected. An arbitrary boundary can be simulated
simply by drawing it-here we've drawn a jug. Initially it is evident
that there are only four directions of travel available to the particles,
but as the gas equilibrates this microscopic detail becomes invisible.

Reflection and refraction. Figure 7.5 shows exactly the same kind
of simulation as Figure 7.4, but with a different initial condition. Here
we've drawn a wall shaped as a concave mirror, and illustrate reflection
of a density enhancement which is initially travelling to the right. For
compactness, we use here a special kind of high-density nondissipative
wave (a "soliton") that this rule supports (on a slightly larger scale,
such phenomena can of course be demonstrated with ordinary near-
equilibrium "acoustic" waves).

In a similar experiment, Figure 7.6 shows the refraction of a wave
by a lens. As before, we draw our obstacle by reserving one bit of each
cell's state as a spatial parameter denoting whether the cell is inside
or outside the lens. Particles outside the lens follow a lattice-gas rule.
Inside the lens, this rule is modified so that particles travel only half

158 Chapter 7. Cellular Automata Machines

WEW

Figure 7.6: Refraction and reflection patterns produced by a spherical lens.

Figure 7.7: (a) The direction of drift is invisible if the fluid has uniform
density. (b) Markers ejected by a smokestack diffuse in the fluid. (c) On a
larger-scale simulation, the streamlines start becoming visible.

as fast as outside (this is accomplished simply by having the particles

move only during half of the steps). Rules that depend on time in such
a manner are provided for in CAM's hardware by supplying "pseudo-

neighbor" signals that can be seen simultaneously by every cell as part
of its neighborhood, and can be changed between steps under software
control.

Tracing a flow. Figure 7.7 illustrates an experiment in which
smoke is used to trace the flow of a lattice gas. Frame (a) shows a lattice

gas with a net drift to the right-this is not evident if we don't color
the particles to indicate their velocities. Frame (b) shows the diffusion
of particles released from a single po . . This source is implemented in

the same manner as the mirrors and lenses discussed previously-we

7.4. Physical modeling with CAM-6 159

mark the cells that are to be sources, and follow a different rule there.
The "smoke" particles released from this source are colored differently
from the other particles; however, the dynamics is "color-blind," and
treats them just as ordinary gas particles. By looking only at these
diffusing smoke particles, one can immediately see their collective net
drift. Frame (c) shows the same phenomenon as (b), but using a space
16 times larger (1024x 1024 rather than 256x256). Since the width of
the diffusion pattern is proportional to v/t, whereas the net distance
a particle drifts is proportional to t, the drift becomes more and more
evident as the scale is increased.

The larger cellular automaton shown in that last frame was simu-
lated by a single CAM module, 5 using a technique called scooping. The
1024x 1024 array of cells resides in the host computer's memory, and
CAM's internal 256X256 array is used as a cache: this is loaded with
a portion of the larger array, updated for a couple of dozen steps, and
then stored back; the process is repeated on the next portion, until all
of the larger array has been updated. Since scooping entails some over-
head (data must be transfered between main memory and cache, and
data at the edges of the cache-where some of the neighbors are not
visible-must be recomputed in a later scoop), the effective cell-update
rate drops somewhat, but to no worse than about half of CAM's normal
rate. A similar technique can be used for three-dimensional simula-
tions with a single CAM (this works particularly well with partitioning
rules-see Section 2.3).

Diffusion-limited aggregation. Figure 7.8 shows two stages in
the growth 3f a dendritic structure by a process of diffusion-limited
aggregation[66,88]. There are three coupled systems here, each using
one bit of each cell's state. The first system is a lattice gas with a 50%
density of particles. This gas is used only as a "thermai bath" to drive
the diffusion oi particles in a second system. The contents of the cells
in this second system are randomly permuted in a local manner that
depends on the thermal bath. The third system is a growing cluster
started from a seed consisting of a single particle: whenever a particle of
the diffusing system wanders next to a piece of the cluster, the particle
is transferred to the cluster system, where it remains frozen in place.

5This experiment was conducted by Tom Cloney.

160 Chapter 7. Cellular Automata Machines

Figure 7.8: Dendritic growth by diffusion-limited aggregation. The process
was started from a one-cell seed in the middle, and with a 10% density of
diffusing particles.

Owing to this capture process, there will be fewer diffusing particles
near the growing cluster than away from it, and the net diffusion flow
is directed toward the cluster. Most of the new arrivals get caught on
the periphery of the cluster, giving rise to a dendritic pattern.

Ising spin systems. Figure 7.9 contains two views of a determin-
istic Ising dynamics[17,85,59,34]: both frames correspond to a single
configuration of spins. The one on the left shows the spins themselves,
the one on the right illustrates the use of CAM's auxiliary tables to dis-
play in real-time a function of the system's state rather than the state
itself-in this case, the bond energy. One can watch the motion of
this energy (which is a conserved quantity and thus obeys a continuity
equation) while the evolution is taking place; one can run space-time
correlation experiments on either magnetization or energy, etc. By us-
ing a heat bath (as in the preceding aggregation model) one can also
implement canonical Ising models. Figure 7.10 plots the magnetiza-
tion in such a model versus the Monte Carlo acceptance probability.6

Techniques which allow CAM itself to generate (in real-time) the finely-
tunable random numbers nccdcd to implement the wide range of ac-

6This experiment was conducted by Charles Bennett.

7.5. CAM-7 161

* ,,l /. ". -
w I.E " " .. .

.." " . is.. .
o -- ~i .- .. .1. " $

:: .:: : i- " -j S " " " "~:'

* .. . -. .: .

-'. £ . #1 . " , " . @

*!.... ,,." ' . :-:

Figure 7.9: (a) A typical spin configuration; (b) the same configuration, but
displaying the energy rather than the spins.

ceptance probabilities used in this experiment are discussed in [801.
The actual method used in the experiment plotted here involved using
a second CAM machine for this purpose and taking advantage of an
instant-shift hardware feature that happens to be present in CAM-6;

this feature is central to the design of CAM.-7.

Other phenomena. Other physical phenomena for which oAM-6
models are provided in [80] include nucleation, annealing, erosion, ge-
netic drift, fractality, and spatial reactions analogous to the Zhabotin-
sky reaction. A number of models which are interesting for the study
of the physics of computation are also given, including the BBMCA
model of Section 2.4 and some models of asynchronous computation.
The examples in our book were developed to illustrate a variety of tech-
niques for using OAM-6; they may also serve to clarify what we mean
when we call this device a general-purpose cellular automata machine.

7.5 CAM-7

If we scale CAM-6 up sixteen-thousandfold we arrive at a machine with
hardware resources comparable to those of a large mainframe computer,

162 Chapter 7. Cellular Automata Machines
1

0 1,2

Figure 7.10: Magnetization p in the canonical-ensemble model, versus the
Monte Carlo acceptance probability. Note the sharp transition at the critical
temperature Tcit.

but arranged in a manner suitable for extensive scientific investigations
using cellular automata. In this and subsequent sections we will de-
scribe our plan for this CAM-7 machine; this design is still undergoing
development.

The principal hardware specifications of CAM-7 will be:

* 2 gigabits of cell-state memory (120ns dynamic RAM)

* 1/2 gigabit of lookup-table memory (35ns static RAM)

* 8192 plane-modules (each 512x512) operating in parallel

* 200 billion cell-bit updates per second (8192 every 40ns)

* I/O bus 8192 bits wide, with a 40ns synchronous word rate
(all data appears on this flywheel bus once each step)

* 2-d;mensional simulations on a 16384 x 8192 x 16 region

* 3-dimensional simulations on a 512x512x512x 16 region

e any 551- ,51.2 region can act as its own TV frame buffer

* any 16 bits in a 1025x 1025 region can be used as a neighborhood

7.6. CAM-7 Architecture 163

As few as 16 of the plane-modules that constitute a complete CAM-

7 machine could be assembled into a 512x512x 16 fractional machine
capable of performing 400 million cell-bit updates per second. Such a
machine could be integrated into a personal computer much as CAM-

6 was, at a similar cost. As many as 100 or more complete CAM-7
machines could be connected together, to perform much larger two
or three dimensional simulations-the constraints are really economic
rather than technological.

7.6 CAM-7 Architecture

This machine's speed comes from its parallelism: the machine is made
out of ordinary commodity RAM chips, driven at full memory band-
width, plus some rather simple "glue" logic which will almost all go
into a semi-custom controller-chip associated with each plane-module.
We feel that this restriction to inexpensive memory is important, since
it should make it economically feasible to build several CAM-7 machines
and connect them together to perform CA experiments which involve
many trillions of updates per second.

7.6.1 Basic structural elements

The design really consists of two separate parts: a "data flywheel"
which sequentially runs through all the cell data once each step, and
lookup tables which transform the cell data as it passes through them.

The data flywheel is made up of 8192 plane-modules, each of which
is a 512x512x1 array of bits. The scanning of a module proceeds as
for a memory-mapped display (just as it did for oAM-6). Each module
puts out one bit every 40 nanoseconds, and takes in one bit at the same
time.

The lookup tables are each connected to 16 plane-module outputs.
Every 40 nanoseconds they return a set of 16 new cell values which are
injected back into the modules (see Figure 7.11).

This selection of module size and update rate is such that the
Scanning of the modules can be locked to the franing forma of a
high-resolution monitor, so as to display 512x512-pixel images at 60

164 Chapter 7. Cellular Automata Machines

16 Planes Old cell value 64K x 16
Vtable

New Coll values

Figure 7.11: A layer of CAM-7, consisting of 16 plane-modules. As the planes
are scanned, a stream of 16-bit cell values are sent as addresses to a 64Kx 16
lookup table-the 16-bit results are put back into the planes, as the new cell
values.

frames/sec with no interlacing. When so locked, CAM-7 will update its
two-gigabits of cell memory 60 times per second. If we decouple the up-
dating from the TV frame rate, CAM-7 will be able to update this entire
two-gigabits 100 times per second. When decoupled, we can have each
plane module scan only a fraction of its cells, permitting many more
updates per second of this smaller array. For example, if each module
scans a region that is only 64x64, then CAM-7 will be able to update a
space of size 2048x 1024x16 about 4000 times per second.

7.6.2 Neighborhoods

The most significant architectural difference between CAM-6 and CAM-7
lies in the way that neighbors are assembled for simultaneous applica-
tion to a lookup table.

CAM-6 was designed primarily for running CA which employ tradi-
tional neighborhood formats, such as the "Moore" and "von Neumann"
ce cel Sn this macine . has many more cell t po cells

one cell. Since this machine has many more cells than processors, cells

7.6. CAM-7 Architecture 165

within each module are processed sequentially. Thus new cell values
cannot simply replace old values if the updating is to result in the same
state that a simultaneous updating would produce-the old values must
be retained as long as they may be needed in computing the new state
of some cell. Because of this CAM-6 requires some buffering of cell
values-neighborhood values sent to the lookup table are taken from
this buffer (see Figure 7.1). For a 3x3 neighborhood, CAM-6 requires
a 515-bit long buffer (2 lines plus 3 bits).

CAM-7 takes as its primary neighborhood format partitioning cellu-
lar automata (see Section 2.3). In this format, space is subdivided into
disjoint subsets of cell bits. Lattice gas models are naturally described
using this format: each site is updated independently of all the others,
and then data is transferred between sites. Since each bit appears as
part of only one site, the new values can immediately replace the old
ones-no buffering such as was done in CAM-6 is needed. This format
has a simpler hardware realization than traditional formats, and allows
an enormous range of neighbor choices (as will be explained below).

Thus a CAM-7 step actually consists of two parts: an updating of all
elements of the current partition, and a regrouping of data bits to form
a new partition. The elements of the partition are just the 16-bit cells,
each of which is updated by applying its value to a lookup table and
storing the 16-bit result back into the cell. The partition is changed by
shuffling bits between cells-how this is done is at the heart of CAM-7's
design.

We take advantage of the fact that the plane-module-the elemen-
tary "chunk" of CAM-7's space-is much larger than a single cell. The
data within one module can be shifted relative to the data in a second
module by simply changing the place where we start scanning the data
in the first module. Bits are shuffled between cells by shifting entire
bit-planes, and this is accomplished by writing to registers that control
where the next scan should begin within each plane-module. Since no
time is stolen from the updating to accomplish these shifts, we refer to
them as "instant shifts." In CAM-7, neighbors are gathered together by
instant shifts.

To avoid complications associated with inter-module communica-
tn, , consider first hw t.... ins, ;_ hif. t w.rk "i a space of size

512x512x16. Each of the 16 modules consists of one 64Kx4 DRAM

166 Chapter 7. Cellular Automata Machines

chip plus a semi-custom controller chip. Given a horizontal and a ver-
tical offset, the controller chip will take care of all of the details: it just
has to read the nybbles of the memory chip in an order corresponding
to a version of the plane that is shifted (with wraparound) by the given
horizontal and vertical offsets. A four-bit pipeline inside the controller
chip permits horizontal shifts that aren't a multiple of four. Thus the
16 bit-planes can be arbitrarily shifted relative to each other between
one scan of the space and the next. As each cell is scanned, the 16
bits that come out at a given instant a: applied as inputs to a lookup
table, and the result is written back to the planes.7

The only point remaining to be explained is how the instant-shift
process works when the machine is configured so that each bit-plane
consists of many plane-modules "glued" together edge-to-edge. What
happens is that each module separately performs a shift as described
above. The wraparound occurs within each module: cells that should
have shifted out the side of one module and into the opposite side of
the adjacent module have instead been reinjected into the opposite side
of the same module. The positions of these cells relative to the edges of
a module are exactly as they should be for a true shift: they are just in
the wrong module. However, since all modules output corresponding
cells at the same moment, each module can produce a truly shifted
output by simply replacing its own output with that of a neighboring
module when appropriate.

For example, consider CAM-7 running in its 16384x8192x 16 config-
uration. Each of the 16 bit-planes in this configuration consists of 512
plane modules, each of which scans an area 512x512. Now suppose we
want to shift one of the bit planes 50 positions to the left. Each of the
rows within each of the plane modules is rotated (circularly shifted)
50 positions to the left by appropriately changing the order of access-
ing the cell memory. Each module's controller chip will produce as
an overall output a 512x512 window onto its portion of the complete

7To save address setup time on the DRAM chips, the controller reads a 4-bit
nybble from memory and then immediately writes a new value (computed from cells
accessed slightly earlier) to that same location. This results in a shift in the physical
lication 0f the coll Sner ory ;ch chi. f b, orn f
within the controller chips.

7.6. CAM-7 Architecture 167

shifted plane in the following way: the first 462 cell values of each row
will come from the plane module's own rotated data, while the last 50
values will be "borrowed" from the rotated data of the module to its
right.

Vertical gluing of bit-planes is achieved in a similar fashion. That
is, the controller chip first glues plane-modules together horizontally;
the output of this gluing process is further multiplexed across vertically
adjacent modules, yielding the final output. In this way, each module
only needs to be connected (by a single bidirectional line) to each of
its four nearest-neighbor modules, and any shift of up to 512 positions
horizontally, 512 vertically, or any combination of these can be accomo-
dated. Thus any 16 bits (one from each plane) in a 1025x 1025 region
can be brought together and used as the neighbors to be jointly sent
to the lookup tables.8

Of course, if we construct rules where the same table-output value is
sent to, say, all 16 planes, then by shifting the planes as described above
we can implement not only the traditional neighborhoods but also any
other neighborhood entailing up to 16 bits chosen in a 1025x 1025 region
around each cell. Thus, conventional (i.e., nonpartitioning) cellular
automata with very wide neighborhoods can also be simulated on CAM-
7, albeit at the cost of using planes and tables rather redundantly.

7.6.3 Input and output

The basic bus on CAM-7 is the flywheel bus, consisting of the final glued
outputs of the plane-modules together with inputs to these same mod-
ules. The input and output buses are each 8192 bits wide on a full
OAM-7 machine: when the machine is operating at its maximum clock
rate, a new 8192-bit output word is produced every 40 nanoseconds,
and new input words can be accepted at the same rate. Every bit of
cell memory in the machine is available to be examined and modified
once during every step. External logic (even, if desired, floating-point
processors) can be attached here. Depending on how CAM-7 is config-
ured, input bits can be ignored (in favor of internally-generated new

'Suh large neighborhoods are, for example, particulady useful in image

processing.

168 Chapter 7. Cellular Automata Machines

cell values), routed as inputs to the lookup tables, or sent directly to
the plai Ps.

Besides the two data lines (one for input and one for output) that
it contributes to the flywheel bus, each plane-module also has a small
number of control lines. Some of these control lines are bussed in bulk
to all the modules; the others are merged together into a control bus of
moderate width. Areas that can be accessed via the control bus include

" the lookup table (with auto increment after each read or write)

" the bit-plane (with auto increment after each read or write)

" various registers (located within the controller chip)

the horizontal-offset register

the vertical-offset register

the horizontal-size register

the vertical-size register

the table-address source select register

the plane-data source select register

" various counters (located within the controller chip)

the address counter

the table-correlation counter

the table-output counter

Each plane-module is connected both to one data line and to one
address line of a lookup table. During normal updating, the address line
is fed sequentially with the glued output of the bit-plane, and the values
appearing on the data line are writen sequentially into the bit-plane
as its new contents. This is, however, just one possible combination of
table-address and plane-data sources-by writing to a module's "source
select" registers, any of the following may be sent either as an address
bit to the lookup table, or as a data bit to be written directly into the
plane:

* the glued output for this plane

7.6. CAM-7 Architecture 169

" the output for the plane lying 8 positions above or below this one

* the output from corresponding plane in the other half of the ma-
chine

" the flywheel-bus input for this plane-module

" one bit from the address counter

* a constant of zero

" the complement of any of the above

Notice that the table output doesn't appear in this list-it can only
be sent to the plane.

By appropriately controlling the sources both for table addresses
and for plane data we can, for example, run a step in which a constant
value of 0 or 1 is sent to the table address while the plane data is not
affected-the plane can even be shifted during this step, since the table
is not needed for this. Thus one can run steps during which one or
more address bits of the table are host-selected constants, analogous to
the "phase" bits[80] used by CAM-6. This allows one to split a lookup
table into several subtables, to be used during consecutive steps without
having to download new tables. Of course downloading new tables isn't
a great problem as long as all the tables are identical (or there are only
a few different kinds), since all tables that are the same can be written
simultaneously.

9

Data is read from or written to either planes or tables by the host
in a similar manner: a stream of bits is sent to or from the module
associated with the data. For planes, the horizontal- and vertical-offset
registers are used not only during steps, but also to control where the
data-bits sent by the host to the plane should go. For tables, each
plane-module controls one bit of the address of a table, and is told by
the host which bit of its internal address counter should be shown to
its table, to control where data-bits go.

If more flexibility in rewriting tables is needed, a number of microprocessors
(say one for every 64 plane modules) could he added to the design. They could
each store a selection of tables, and download them under the command of the
host. They could also be useful in generating initial values for the cell states.

170 Chapter 7. Cellular Automata Machines

Note that these internal address counters are not provided solely
for loading tables; they can also be used during cell-updating, clocked
by the 40ns system clock. By addressing a table with some counter
bits one can, for instance, provide spatial parameters to CA rules (cf.
the rotation algorithm in Section 7.6.8) or perform on-the-fly testing of
tables.

7.6.4 Data analysis

Each plane module contains a number of counters that are used for
real-time data analysis, error detection/correction, or both.

Table outputs are always counted (number of ones in eacl, output).
An analysis step can be performed by having some planes remain un-
changed (or just shift) while the corresponding table outputs are being
counted. For example, if a plane is being used to store a spatial pa-
rameter (such as an obstacle in a fluid-flow experiment) the associated
table output is not needed for updating, and may be programmed for
data analysis and counted. If there aren't enough such "free" tables,
or if the analysis requires a different neighborhood than the updating,
separate analysis steps may be interleaved between updating steps by
rewriting tables.

CAM-7 can be operated as two half-machines-table outputs are
continuously compared between corresponding parts of the two halves
and the number of differences is counted by the table correlation coun-
ters. Space and time autocorrelations can be accumulated by running
two versions of the same system simultaneously, with a constant space
or time shift between them. Since both the number of differences be-
tween two corresponding table outputs and the number of ones output
by each table separately are counted, the number of occurences of each
of the four possible pairs of binary outputs can be computed. The
fact that the sum of the two separate counts plus the correlated count
should be even acts as a consistency check for detecting counter errors.
If exactly the same system is run in both halves of the machine, the
correlation counters detect updating errors.

Note that all counters are double-buffered, and can be read at any
time by the host without affecting a step that is in progress.

7.6. CAM-7 Architecture 171

7.6.5 Error handling

Like CAM-6, each CAM-7 machine will constitute a "building block"
from which one can build much larger machines. For example, eight
such blocks used together will have two giga-bytes of cell-state memory
and will perform one-and-a-half trillion rather powerful cell-bit updates
every second. While there are no inherent architectural limits on how
many CAM-7's can be hooked together, there is a practical problem
which grows as more and more CAM "blocks" are added, namely, error
handling. Because of the built-in analysis capabilities described in the
previous section, and additional hardware consistency checks, it will be
possible to discover and recover from hardware errors.

Since tables are not supposed to evolve in time, it is relatively
straightforward to test whether or not a table contains an error. We
can usually detect table errors by performing an analysis step during
which all tables are addressed by counter bits-we simply count the
number of ones in all table outputs. As long as correlated pairs of
tables contain the same rule we can simultaneously perform a more
detailed check by comparing table outputs. Alternatively, we can have
the host perform a verify-write of all tables, in which the old contents
is read and compared with what the host is writing.

Cell-memory is tested by each plane-module during every step.
About 22 checksum bits, reflecting the number of ones last written and
their positions, are compared to corresponding checksums performed
on the data subsequently read. Changing any bit of the configuration
will, on the average, change about half of the checksum bits. By di-
viding all possible 512x512 configurations evenly into more than 106
different classes, these checksums make the chance of an undetected
plane-memory error very small.

Hard errors, caused by bad components, can be tested for whenever
any error is detected. If we run an occasional analysis step during which
we test tables, bad chips should always be noticed quickly.

Soft errors, in which memory bits are typically changed, are prin-
cipally caused by alpha particles. Modern commercial memory chips,
which constitute most of CAM-7, are inherently quite reliable: even
with absolutely no provision for error correction it should be possible
to run this machine with 16384 memory chips for several days at a

172 Chapter 7. Cellular Automata Machines

time without any errors. Thus for a single CAM-7 it may be perfectly
practical in most cases to simply detect errors, and rerun an experi-
ment if any occur. In fact for many statistical mechanical experiments,
such as fluid flow past obstacles, a rare error in which a bit is dropped
doesn't matter at all, and so we only need to rewrite incorrect tables
and obstacles, and watch out for hard errors.

For longer runs, or for large machines built out of many CAM-7's, if
we want to guarantee exactly correct operation it is probably most prac-
tical to use each machine as two correlated half-machines, both running
the same experiment. Since the chance of two different plane-modules
both experiencing a soft error during the same step is extraordinarily
small (expected perhaps once in 1016 steps for a single CAM-7 machine)
we can assume that one out of every correlated pair of plane-modules
will always be correct. Planes that were updated incorrectly are fixed
by using data from the correct twin, and incorrect tables are simply
rewritten. Notice that to correct a plane-module, data doesn't even
have to be physically moved from one module to its twin-we can sim-
ply run the next step with the correct module providing the input for
the tables in both halves of the machine.

Given an error, there remains the problem of deciding which of the
pair of correlated plane-modules is incorrect. For plane errors, we rely
on the internal checksums maintained by the plane-modules to tell us
which module to fix. Otherwise we make use of one further facility
provided by the hardware in order to quickly and reliably find the
error-even if it's a transient one that didn't change the contents of a
table. Whenever table comparisons disagree, both the original contents
of the cell where the error occured and the updated value are latched
by the controller chips. By examining this information, the host can
tell which of the planes was updated incorrectly.

7.6.6 Three-dimensional operation

When a single CAM-7 is operating in its 512x512x512x16 configura-
tion, it is of course the fact that all plane-modules are updating the
same position at the same time that allows information from one layer

Uo be direcly available for use by adjacentayers. t, of p, e
modules, one can think of this configuration as being 512x512x8192,

7.6. CAM-7 Architecture 173

i.e., 8192 deep in the third dimension. We prefer, however, to think of
512 "layers" each consisting 16 consecutive planes, since the outputs
from each stack of 16 planes go to common lookup tables.' 0

Each plane-module in this 8K stack is connected to the module
8 positions above it and to the one 8 positions below it-a total of
four wires (input and output above and below) time-shared between all
256K of the cell-bits on each module. Each module has several choices
for what it sends as an address to its associated- lookup table. It can of
course send its own glued output. It can also send the glued output of
the plane 8 positions above or below itself. These three choices make
three-dimensional operation straightforward.

For example, each 16-bit cell could be thought of as encoding the
contents of a 2x2x2 cube having 2 bits at each site. The top eight
bits in the cell (i.e., those belonging to the top eight planes in this
16-plane layer) would correspond to the top of the cube, the other
eight to the bottom of the cube. After updating the cube according to
some rule, let's say that we want to switch to a partition in which the
corners of four adjacent cubes become the new cubes. To accomplish
this, we will select for each lookup table input the output of the plane
module 8 positions above-this is equivalent to shifting all of the plane
data 8 positions down. Data from the bottoms of one layer of cubes
now appear as inputs to the same tables as the tops of the next layer.
We must now shift the planes corresponding to the various corners of
the old cubes so that the data from four adjacent corners are shifted
together. If we've been careful about what order within the cell the
results of the first step were placed, we can even use the same rule
on these new blocks. If we want different rules on the two partitions,
we can of course rewrite the tables before each step. As we alternate
between these two partitions, we can avoid a net motion of the cubes
by alternately shifting the plane data up and down while moving the

'External logic connected to the flywheel bus inputs and outputs can of course
group these planes arbitrarily. For example, floating point processors might use
them as multi-hundred-bit cells, each containing several floating point numbers
that can be separately shifted to change the neighborhood. Since CAM processes
each plane-module serially, these floating-point calculations could be pipelined-the
delay between starting and finishing processing a cell could be lengthy, as long as a
new cell value is completed every 40ns.

174 Chapter 7. Cellular Automata Machines

blocking back and forth in the other two directions as well.

Just as we could simulate the Moore and von Neumann neighbor-
hoods in two dimensions, we can simulate nearby-neighbor interactions
in three dimensions. For example, let's consider a rule that calls for
the center cell, its 6 nearest neighbors, and the center cell in the "past"
(i.e., the value the center cell had one step before), with two bits of
state for each neighbor. We simply get two bits from the layer above,
two from below, and the rest from the current layer (for a total of 16
bits). Our tables should each produce seven 2-bit copies of the new
value for the center-cell, plus one copy of the present value (which will
be used as the past by the next step). Four of the copies of the center
cell will be shifted one position (north, south, east, and west). One
will be visible only to the layer above, one only to the layer below,
and the last to the current layer. The lookup tables can now calculate
the updated values, and the process can be repeated. Other neighbor-
hoods (for instance, the twelve second-nearest neighbors, or the eight
third-nearest neighbors) can all be similarly implemented.

Notice that bits coming from above and below mask the correspond-
ing bits from the current layer-the bit from the current layer no longer
appears as an input to this layer's lookup table. You might worry that
some bits could become completely hidden and not available as part of
the neighborhood of any table, but this is never the case. The masked
bit can simply be made visible 8 positions down within the current
layer, masking another bit which is already visible as part of the neigh-
borhood for the next layer.

What about rules that need more than 16 bits of input? By using
some of the bit planes to store intermediate values, rules that need
more bits of input can be synthesized as a composition of completely
arbitrary 16-input/16-output logical functions. Taking advantage of
the strong coupling between the two halves of each CAM-7 machine"
one can readily synthesize rather large neighborhoods (up to 32 bits or
more) by rule-composition. Note, however, that such compositions can
entail, in the worst case, an exponential slow-down as the number of

"Recall that any bits from the 16-bit cell in one half can be substituted as table
address sources for the corresponding bits in the other half. Machines connected
via inputs on the flywheel bus are similarly strongly coupled.

7.6. CAM-7 Architecture 175

neighbors increases.

7.6.7 Display

Being able to display the state of our system in real time provides
important feedback as to whether or not everything is working as ex-
pected, and what parts of the system are doing something interesting
that should be investigated more closely.

Two dimensional display is not much of a problem for CAM-7, since
this machine can provide its data in the correct format for a color mon-
itor. This machine can even, if desired, scan its data in the correct
format for an interlaced display-since each cell is updated indepen-
dently of all others the rows can be scanned in whatever order you
choose.

For a complete 16384x8192 display, we could cover an enormous
wall with 512 color monitors (more if several CAM's are connected),
each of which would show a 512x512 patch using 64K different colors.
Of course it might be more practical to use only one monitor (or just a
few), and shift the data to move the window around. Using interlaced
displays and a one-line buffer, 1024 x 1024 or even 2048 x 2048 regions
could be viewed on a single monitor.

Since all of the neighbors that would be used for a cell-update are
available simultaneously, it is a simple matter to display a function of
the neighborhood, rather than the neighborhood itself. For example, in
a fluid-mechanics experiment you might want to show only the smoke
particles that trace the flow. Going a step further, part of the machine's
resources could be devoted specifically to constructing the image to be
displayed. For example, one half of the machine could do the exper-
iment while the other half could monitor the first half, accumulating
time-average data for the display.

CAM-7 realizes a three-dimensional system as a stack of two-
dimensional layers, each of which can be viewed exactly as discussed
above. In its 512x512x512x16 configuration, it would take 512 color
monitors to see all layers at once; on the other hand, a single monitor
would be enough to see any part of the cube, by shifting the data ap-
propriately (now in three dimensions). Outputs from groups of layers

176 Chapter 7. Cellular Automata Machines

could be combined (e.g., summed, OR'ed, etc.) and shown in a simi-
lar manner (still without any external frame buffer). You could even
display a sum down through the entire machine-a sort of X-ray.

Suppose we would like to see slices through the cube perpendicular
to the plane of our two-dimensional slices. This, and any other 90 de-
gree rotation of the cuh.e about its x, y, or z axis is easily accomplished
by CAM using a simp split-and-shift algorithm. 2 Because of the in-
stant shifts available along the bit-planes, rotations about one of the
axes can be accomplished in a fraction of a second; rotations about the
other two axes would take several seconds.

Such rotations would be particularly useful in conjuction with a
display that provides a more natural format for CAM's 3-D ouput.

7.6.8 A true three-dimensional display

A true three-dimensional display (imagine a translucent cube hanging
in mid-air and observable from within a wide angle) is achievable in
a relatively straightforward manner. To illustrate the considerations
involved, we will describe one particular technique.

Let us first construct a one-bit output for each of CAM-7's 512 lay-
ers; in this way, we obtain the equivalent of 512 TV-signal sources, all
broadcasting in parallel. We would like to make up a cube out of these
512 TV frames, by literally stacking them in a third dimension like a
deck of cards; as it turns out, it will be expedient to view the resulting
"deck" from the top edge rather than from the front side.

Now, construct an array of 512x512 light emitting diodes; each row
of LED's is driven by the outputs of a 512-bit, serial-in, parallel-out
shift register with latched outputs (the equivalent of 32 74F673 chips).
In turn, the shift registers are fed with the above TV sources, and their
outputs latched at the end of every scan line. Thus, the collection of
512 lines produced in parallel by CAM-7's 512 layers will have been
captured as an two-dimensional LED picture; this picture, which lies

12To rotate a square image, you can first spiit it into quarters, then shift the four
quarters horizontally or vertically until they have each been shifted to a position
90 degrees clockwise of where they start, . Each quarter is similarly rotated, and
then each eighth. etc.. until you reach the level of a single cell. Cells don't look any
different when rotated, so you're done.

7.7. Applications 177

orthogonally to the "cards of the deck," will last about 30usec before
being replaced by the next picture, corresponding to the next scan line.

Every time a new LED picture is ready we want to display it some-
what below the previous one, so that starting from the top edge of the
deck for the first line of the TV frame we will end up at the bottom edge
with the frame's last line. This sweeping movement of the LED array
is easily achieved by optical means-in a way similar to that demon-
strated with success at BBN[68]. That is, the array will be viewed
reflected on a thin-membrane mirror stretched over a loudspeaker. The
speaker itself will be driven with a 60-Hz sawtooth wave, in sync with
CAM-7's internal scan; the resulting slight changes in curvature of the
mirror will make the LED-array's image sweep through a sequence of
focal planes.13

Finally, to avoid filling the three-dimensional display with too much
data, some selective staining techniques may be appropriate, much as
in microscopy. For instance, surfaces can be made visible by simulating
"light" within the system: this would consist of particles that travel
invisibly in a given direction and light up when they cross a surface
(defined by an appropriate local condition).

7.7 Applications

In addition to statistical mechanical applications that are becoming
known (fluid dynamics, Ising spin systems, optics, seismic waves, etc.)
CAM-7 should be valuable for a number of less obvious applications.

For example, the structure of CAM-7 seems ideal for certain types of
image processing; in particular, for certain "retina-like" tasks where the
information contained in detailed two-dimensional images arriving i'
rapid succession is analyzed and preprocessed in real-time by algorithms
that are in the main local and uniform, in order to supply a more "brain-
like" post-processor with a much smaller amount of pie-digested data.

13Note that in the BBN setup the performance of the system is limited by the
available data rate (since the images to be optically multiplexed are generated by
drawing vectors on a Cl1') rather than by the optical arrangement. CAM-7, on the
other hand, has a real-time data rate of 120 gigabits pcr sccond, which is more thai
sufficient to take full advantage of this arrangement.

178 Chapter 7. Cellular Automata Machines

Each layer could run a different rule, each involving-if desired-
rather widely scattered neighbors. Using the 3-D connections, with
camera input going to the first layer, we could do some consecutive
steps of image-processing in a pipelined manner-the output of one
layer supplying the input for the next. 14 By custom wire-wrapping the
flywheel-bus outputs and inputs, a much more complicated pipeline
could be achieved. For example, the output of one layer could become
the input to several other layers, which could then lead to other layers;
there could be further splits and merges, data following a shorter path
could be time-correlated with data following a longer path, etc.

CAM-7 could be used for digital logic simulations in two or three
dimensions. Since bit-planes can be made to shift by large amounts
between steps, signal speeds would not necessarily be limited to one
cell per step. CAM-7 could also be used as a testbed for ideas about
using cellular automata VLSI chips as "soft circuitry." For example,
given a chip that runs a simple 2-D rule such as LOGIC (Section 4.4),
one could download a pattern of wires and gates to a chip, and have
it simulate the circuit fast enough to actually be used in placed of the
target circuit itself.

In general, this machine should be useful in a range of simulation
and modeling tasks involving systems which have an appropriate loca"
structure.

14Since each layer can have a different rule stored in its look-up table, CAM-7 as
a whole is a true multiple-program, multiple-data machine.

Bibliography

179

180 Bibliography

[1] ALADYEV, Viktor, "Computability in Homogeneous Structures,"
Izv. Akad. Nauk. Estonian SSR, Fiz.-Mat. 21 (1972), 80-83.

[2] AMOROSO, Serafino, and Y. N. PATT, "Decision Procedures
for Surjectivity and Injectivity of Parallel Maps for Tesstllation
Structures," J. Comp. Syst. Sci. 10 (1975), 77-82.

[3] BANKS, Edwin, "Information Processing and Transmission in
Cellular Automata," Tech. Rep. MAC TR-81, MIT Project MAC
(1971)

[4] BENIOFF, Paul, J. Stat. Phys. 22 (1980) 563; 29 (1982) 515.

[5] BENIOFF, Paul, "Quantum Mechanical Hamiltonian Models of
Discrete Processes That Erase Their Own Histories: Application
to Turing Machines," Int. J. Theor. Phys. 21 (1982) 177-201.

[6] BENIOFF, Paul, "Quantum Mechanical Hamiltonian Models of
Computers," New Techniques and Ideas in Quantum Measure-
ment Theory (Daniel GREENBERGER ed.), New York Academy
of Sciences (1986), 475-486.

[7] BENNETT, Charles, "Logical Reversibility of Computation," IBM

J. Res. Develop. 6 (1973), 525-532.

[8] BENNETT, Charles, "Thermodynamics of Computation," Int. J.
Theor. Phys. 21 (1982), 905-940.

[9] BENNETT, Charles, and Geoff GRINSTEIN, "Role of Irreversibil-
ity in Stabilizing Complex and Nonenergodic Behavior in Locally
Interacting Discrete Systems," Phys. Rev. Lett. 55 (1985), 657-
660.

[10] BENNETT, Charles, Tommaso TOFFOLI and Stephen WOLFRAM,
"Cellular Automata 86," Tech. Memo LCS-TM-???, MIT Lab. for
Comp. Sci. (1987).

[11] BENNETT, Charles, Norman MARGOLUS and Tommaso TOF-
FOLI, "Bond Energy Variables For Spin Glass Dynamics," sub-
mitted for publication.

Bibliography 181

[12] BERLEKAMP, Elwyn, John CONWAY, and Richard GuY, Win-
ning Ways For Your Mathematical Plays, vol. 2, Academic Press
(1982).

[13] BURKS, Arthur (ed.), Essays on Cellular Automata, Univ. Ill.
Press (1970).

[14] CALIFANO, Andrea, Norman MARGOLUS and Tommaso TOF-
FOLI, CAM-6 User's Guide; and Kenneth PORTER, CAM-6 Hard-
ware Manual, Systems Concepts, 55 Francisco St., San Francisco
94133 (1987).

[15] CODD, E. F., Cellular Automata, Academic Press (1968).

[16] Cox, J. Theodore, David GRIFFEATH, "Recent Results For the
Stepping Stone Model," University of Wisconsin Math Depart-
ment preprint.

[17] CREUTZ, Michael, "Deterministic Ising Dynamics," Annals of
Physics 167 (1986), 62-76.

[18] DEUTSCH, David, "Quantum Theory, the Church-Turing Hy-
pothesis, and Universal Quantum Computers," Proc. Roy. Soc.
(1985).

[19] D'HUMItRES, Dominique, Pierre LALLEMAND, and T. SHIMO-
MURA, "Lattice Gas Cellular Automata, a New Experimental
Tool for Hydrodynamics," Preprint LA-UR-85-4051, Los Alamos
National Laboratory (1985).

[20] FARMER, Doyne, Tommaso TOFFOLI, and Stephen WOLFRAM
(eds.), Cellular Automata, North-Holland (1984).

[21] FELLER, William, An Introduction to Probability Theory and Its
Applications, vol. I, 3rd ed., Wiley (1968).

[22] FEYNMAN, Richard, "Simulating Physics with Computers," Int.
J. Theor. Phys. 21 (1982), 467-488.

[23] FYN.A.N, Richard P., "Quantum Merhanical Comruters," Opt.
News 11 (1985).

182 Bibliography

[24] FREDKIN, Edward, private communication.

[25] FREDKIN, Edward, and Tommaso TOFFOLI, "Conservative
Logic," Int. J. Theor. Phys. 21 (1982), 219-253.

[26] FRISCH, Uriel, Brosl HASSLACHER, and Yves POMEAU, "Lattice-
Gas Automata for the Navier-Stokes Equation," Phys. Rev. Lett.
56 (1986), 1505-1508.

[27] GAGS, Peter, and John REIF, Proc. 17-th ACM Symp. Theory
of Computing (1985), 388-395.

[28] GARDNER, Martin, "The Fantastic Combinations of John Con-
way's New Solitaire Game 'Life'," Sc. Am. 223:4 (April 1970),
120-123.

[29] GREENBERG, J., and S. HASTINGS, "Spatial Patterns for Dis-
crete Models of Diffusion in Excitable Media," SIAM J. Appl.
Math. 34 (1978), 515.

[30] HAYES, Brian, "The Cellular Automaton Offers a Model of
the World and a World Unto Itself," Scientific American 250:3
(1984), 12-21.

[31] HARDY, J., 0. DE PAZZIS, and Yves POMEAU, "Molecular Dy-
namics of a Classical Lattice Gas: Transport Properties and Time

Correlation Functions," Phys. Rev. A13 (1976), 1949-1960.

[32] HEDLUND, G. A., K. I. APPEL, and L. R. WELCH, "All Onto
Functions of Span Less Than or'Equal To Five," Communications

Research Division, working paper (July 1963).

[33] HEDLUND, G. A., "Endomorphism and Automorphism of the
Shift Dynamical System," Math. Syst. Theory 3 (1969), 51-59.

[34] HERRMANN, Hans, "Fast Algorithm for the Simulation of Ising
Models," Saclay preprint no. 86-060 (1986).

[251 HO A N, John, "Tn versa! Spaces: A Basis for SuA:cs in Adap-

tation," Automata Theory, Academic Press (1966), 218-230.

Bibliography 183

[36] KA I)A NOFF, leo, "Oil two levels," Physics 'rodiay 39:9 (Septemn-
ber 1986), 7- 9.

[37] KIMIJIIA, M., G. WIss, "The Stepping Stone Model of Popu-
lation Structure and the l)ecrcase of Genetic Correlation With
l)istance," enetics 49 (1964), 561 -576.

[38] K11KIhATIHICK, Scott, C.). GI.I,AT'r Jr., M.P. V.mi.cci, "Opti-
mization by Simulated Annealing," Science 220 (1983), 671 -680.

[39] KNUTrri, Donald, The Art of Computer Programming, vol. 2,
Semiummerical Algorithms, 2nd cd., Addison-Wesley (1981).

[4t0] LANDAUER, Rolf, "Irreversibility and Ileat Generation in the
Computing Process," IBM J. Res. IDevel. 5 (1961), 183-191.

141] LANDAUE;i, Rof, "Computation and Physics," to appear in
Foundations of Physics (1986).

[42] LANDAU, L., E. LlFs1rrz, Mechanics, Pergamon Press (1960).

[43] LIxIIAREV, K. K., "Classical and Quantum Limitations on En-
ergy Consumption in Computation," Int. J. Theor. Phys. 21
(1982), 311-326.

[44] MANDELBROT, Benoit, The Fractal Geometry of Nature, W. H.
Freeman (1982).

[45] MARGOLUS, Norman "Physics-like Models of Computation,"
Physica lOD (1984), 81-95.

[46] MARGOLUS, Norman, Tommaso TOFFOLI, and Gerard Vlicl-
NIAC, "Cellular-Automata Supercomputers for Fluid Dynamics
Modeling," Phys. Rev. Lett. 56 (1986), 1694-1696.

[47] MARGOLUS, Norman, "Quantum Computation," New Tech-
niques and Ideas in Quantum Measurement Theory (Daniel
GREENBERGER ed.), New York Academy of Sciences (1986), 487-
497.

184 Bibliography

[48] MARGOLUS, Norman, "Partitioning Cellular Automata," in
preparation.

[49] MARUOKA, Akira, and Masayuki KIMURA, "Conditions for Injec-
tivity of Global Maps for Tessellation Automata," Info. Control
32 (1976), 158-162.

[50] MARUOKA, Akira, and Masayuki KIMURA, "Injectivity and Sur-
jectivity of Parallel Maps for Cellular Automata," J. Comp. Syst.
Sci. 18 (1979), 47-64.

[51] MLZARD, M., "On the Statistical Physics of Spin Glasses," Dis-
ordered Systems and Biological Organization (E. BIENENSTOCK
et al., ed.), Springer-Verlag (1986), 119-132.

[52] MINSKY, Marvin, Computation: Finite and Infinite Machines,
Prentice-Hall (1967).

[53] ORSZAG, Steven, and Victor YAKHOT, "Reynolds Numbers Scal-
ing of Cellular-Automaton Hydrodynamics," Phys. Rev. Lett. 56
(1986), 1691-1693.

[54] PACKARD, Norman, and Stephen WOLFRAM, "Two-dimensional
Cellular Automata," J. Stat. Phys. 38 (1985), 901-946.

[55] PEARSON, Robert, "An Algorithm for Pseudo Random Number
Generation Suitable for Large Scale Integration," J. Computat.
Phys. 3 (1983), 478-489.

[56] PERES, Asher, "Reversible Logic and Quantum Computers,"
Phys. Rev. A (Dec. 1985).

[57] PERES, Asher, "Measurement of Time by Quantum Clocks," Am.
J. Phys. 48 (1980), 552.

[58] POMEAU, Yves, and P. RESIBOIS, Phys. Rep. 19 (1975), 63.

[591 POMEAll, Yves, "Tnvariant in Cellular Automata," J. Phys. A17
(1984), L415-L418.

Bibliography 185

[60] POROD, W., R. GRONDIN, D. FERRY, and G. POROD, "Dissipa-
tion in Computation," Phys. Rev. Lett. 52 (1984), 232; comments
by C. H. Bennett, P. Benioff, T. Toffoli, and R. Landauer Phys.

Rev. Lett. 53 1202.

[61] REITER, Carla, "Life and Death on a Computer Screen," Dis-
cover (August 1984), 81-83.

[62] RESSLER, Andrew L., The Design of a Conservative Logic Com-
puter and a Graphical Editor Simulator, (Master of Science The-
sis), Massachusetts Institute of Technology (1981).

[63] RICHARDSON, D., "Tessellation with Local Transformations," J.
Comp. Syst. Sci. 6 (1972); 373-388.

[64] ROSENBERG, I., "Spin Glass and Pseudo-Boolean Optimization,"
Disordered Systems and Biological Organization (E. BIENEN-
STOCK et al., ed.), Springer-Verlag (1986), 327-331.

[65] SALEM, James, and Stephen WOLFRAM, "Thermodynamics and
Hydrodynamics of Cellular Automata," Theory and Applications
of Cellular Automata (Stephen WOLFRAM ed.), World Scientific
(1986), 362-366.

[66] SANDER, Leonard, "Fractal growth processes," Nature 322
(1986) 789-793.

[67] SHANNON, Claude and W. WEAVER, The Mathematical Theory

of Communication, Univ. of Illinois Press (1949).

[68] SlIER, Lawrence and C. D. BARRY, "The Use of an Oscillating
Mirror for 3-Dimensional Display," New Methodologies in the
Study of Protein Configuration, (edited by T. T. Wu), Van Nos-
trand (1985), Chapter 6.

[69] SMITH, Alvy, "Cellular Automata Theory," Tech. Rep. 2, Stan-
ford Electronic Lab., Stanford Univ. (1969).

[70] STA WV, H. Eren,-, anr Nicole OSTROWSKY, On Growth and
Form, Martinus Nijhoff (1986).

186 Bibliography

[71] TOFFOLI, Tommaso, "Cellular Automata Mechanics," Tech.
Rep. 208, Comp. Comm. Sci. Dept., The Univ. of Michigan
(1977).

[72] TOFFOLI, Tommaso, "Computation and Construction Univer-
sality of Reversible Cellular Automata," Journal of Computer
Systems Science 15 (1977), 213-231.

[73] TOFFOLI, Tommaso, "Integration of the Phase-Difference Rela-
tions in Asynchronous Sequential Networks," Automata, Lan-
guages, and Programming (Giorgio AUSIELLO and Corrado
B61M ed.), Springer-Verlag (1978), 457-463.

[74] TOFFOLI, Tommaso, "Bicontinuous Extension of Reversible
Combinatorial Functions," Maths. Syst. Theory 14 (1981), 13-
23.

[75] TOFFOLI, Tommaso, "Reversible Computing," Automata, Lan-
guages and Programming (DE BAKKER and VAN LEEUWEN eds.),
Springer-Verlag (1980), 632-644.

[76] TOFFOLI, Tommaso, "CAM: A High-Performance Cellular-
Automaton Machine," Physica 10D (1984), 195-204.

[77] TOFFOLI, Tommaso, and Norman MARGOLUS, "The CAM-7
Multiprocessor: A Cellular Automata Machine," Tech. Memo
LCS-TM-289, MIT Lab. for Comp. Sci. (1985).

[78] TOFFOLi, Tommaso, "Cellular Automata as an Alternative to
(Rather Than an Approximation of) Differential Equations in
Modeling Physics," Physica 10D (1984), 117-127.

[791 TOFFOLI, Tommaso, and Norman MAROOLUS, Invertible Cellu-

lar Automata, in preparation.

[80] TOFFOLI, Tommaso, and Norman MARGOLUS, Cellular Au-
tomata Machines: A New Environment for Modeling, MIT Press
(1987).

Bibliography 187

[81] TUCKER, Jonathan, "Cellular Automata Machine: The Ultimate
Parallel Computer," High Technology 4:6 (1984), 85-87.

[82] TURING, Alan, "On Computable Numbers, With an Application
to the Entscheidungsproblem," Proc. London Math. Soc., ser. 2,
43 (1936), 544-546.

[83] ULAM, Stanislaw, "Random Processes and Transformations,"
Proc. Int. Congr. Mathem. (held in 1950) 2 (1952), 264-275.

[84] VAN DYKE, Milton, An Album of Fluid Motion, Parabolic Press
(1982).

[85] VICHNIAc, G6rard, "Simulating Physics With Cellular Au-
tomata," Physica 10D (1984), 96-115.

[86] VICIINIAC. G6rard, "Cellular Automata Models of Disorder and
Organization," Disordered Systems and Biological Organization
(BIENENSTOOK et al. eds.), Springer-Verlag (1986), 1-20.

[87] VON NEUMANN, John, Theory of Self-Reproducing Automata
(edited and completed by Arthur BURKS), Univ. of Illinois Press
(1966).

[88] WITTEN, Thomas, and Leonard SANDER, Phys. Rev. Lett. 47
(1981), 1400.

[89] W OLFRAM, Stephen, "Statistical Mechanics of Cellular Au-
tomata," Rev. Mod. Phys. 55 (1983), 601-644.

[90 WOLFRAM, Stephen, "Universality and Complexity in Cellular
Automata," Physica 10D (1984), 1-35.

[91] WOLFRAM, Stephen, "Computation Theory of Cellular Au-
tomata," Commun. Math. Phys. 96 (1984), 15-57.

[92] WOLFRAM, Stephen, "Random-Sequence Generation by Cellular
Automata," Adv. Applied Math. 7 (1986), 123-169.

[9.] WOT.FPRAM, Stephen (ed.), Theory and Applications of 1 lular
Automata, World Scientific (1986).

188 Bibliography

[94] ZAIKIN, A., and A. ZHABOTINSKY, Nature 225 (1970), 535.

[95] ZUREK, W. H., "Reversibility and Stability of information Pro-
cessing Systems," Phys. Rev. Lett. 53 (1984) 3^91.

[96] ZUSE, Konrad, Rechnender Raum, Vieweg, Braunschweig (1969);
translated as "Calculating Space," Tech. Transl. AZT-70-164-
GEMIT, MIT Project MAC (1970).

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 Copies
Information Processing Techniques Office
Defence Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 Copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

DR. E.B. ROYCE, CODE 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

